A girl with Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1B (PHP1B), a unique example of multiple imprinting defects

Laura J.H. Sonneveld1, Boudewijn Bakker1, M. Claire Woltering1, Hennie Blijker1, and Sarina G. Kant1-3.
1) Department of Paediatrics, Reinier de Graaf Hospital, Delft, the Netherlands; 2) Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 3) Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands Authors have nothing to disclose

Conclusions
- Multiple imprinting defects can cause multiple diseases in patients.
- Symptoms of PHP1B may be absent at time of diagnosis of BWS.
- As prolonged subclinical hypocalcaemia can have negative consequences (intracerebral calcifications, cardiomyopathy etc), one should be aware of multiple imprinting defects, especially PHP1B, in patients with BWS. We therefore advice that screening for PHP1B (either genetically or by monitoring calcium homeostasis during regular follow-up) should be considered in patients with BWS.

Background
Although multiple imprinting defects have been found by genetic analysis in a subset of patients with BWS, very few patients have been described with both genetic and clinical signs and symptoms of multiple diseases caused by imprinting defects.

Methods
Methylation analysis at KCNQ1OT1 and H19 was measured by methylation sensitive restriction digestion. Methylation analysis of the GNAS region was done by MLPA.

Case report
Girl 6 months old: she presented with morbid obesity (BMI +7.5 SDS) (Figure 1) and a large umbilical hernia.
- Genetic analysis: hypomethylation of the KCNQ1OT1 gene (Figure 2), consistent with Beckwith-Wiedemann syndrome.
- Normal calcium homeostasis (Table 1).

10 years old: she presented with fatigue.
- Laboratory analyses: marked hypocalcaemia with signs of PTH resistance (high PTH, high phosphate, low urine phosphate, normal alkaline phosphatase). (Table 1)
- No signs of Albright hereditary osteodystrophy (AHO).
- PTH resistance in a patient without AHO-phenotype but with a known imprinting defect suggested PHP1B due to defective imprinting of the GNAS region (Table 2).
- Methylation analysis of the GNAS region (Figure 2) confirmed the diagnosis: hypomethylation (<20%) of the GNAS exon 1A, NESPAS and GNASXL loci and 100% methylation of NESP locus, consistent with the clinical diagnosis of PHP1B.

References

Abbreviations
MLPA, Multiplex Ligation-dependent Probe Amplification
AHO, Albright hereditary osteodystrophy;
PHP, pseudohypoparathyroidism;
PPHP, pseudopseudohypoparathyroidism;
POH, progressive osseous heteroplasia.

Correspondence to:
Laura Sonneveld
Department of Paediatrics, Reinier de Graaf Hospital, Delft
P.O. Box 5011, 2600 GA Delft, The Netherlands
T +3115-2604988; l.sonneveld@rdgg.nl