Analysis of the WDR11 gene in patients with isolated hypogonadotropic hypogonadism with and without olfactory abnormalities

Luciana R. Montenegro, Ana Claudia Latronico, Letícia F. G. Silveira

Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM/42), Disciplina de Endocrinologia e Metabolologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brazil

INTRODUCTION

- The WDR11 gene was recently involved in the pathogenesis of isolated hypogonadotropic hypogonadism (IHH).
- In 2010, Kim et al. (1) identified five different heterozygous missense WDR11 rare variants in 6 of 201 IHH patients (5 normosmic IHH and 1 Kallmann Syndrome), which were absent in more than 400 controls.
- Studies in animal models demonstrated that WDR11 interacts with EMX1, a homeodomain transcription factor involved in the development of olfactory neurons and the missense alterations reduced or abolished this interaction (1).
- However, since this first description, no other mutations in this gene were associated with the IHH phenotype (2-4).

OBJECTIVE

- To investigate the presence of WDR11 rare variants in patients with isolated hypogonadotropic hypogonadism (IHH) with and without olfactory defects.

METHODS

- Genomic DNA extraction from peripheral leukocytes
- PCR amplification of the 29 exons and intron-exon boundary regions of the WDR11, using specific intronic primers pairs
- Sanger sequencing and comparison to the reference DNA sequence available at NCBI: NM_018117.11

RESULTS

- No rare variants were identified in the patients studied.
- Only the following known polymorphisms were identified:
 - rs35692153
 - rs7899928
 - rs1652277
 - rs149486212
 - rs12268298
 - rs151162552
 - rs117848117

CONCLUSIONS

- These results suggest that WDR11 rare variants are not a common cause of IHH.
- The role of this gene in the pathogenesis needs to be further investigated.

REFERENCES

This work was supported by FAPESP grants 05/04726-0 and 2013/03236-5