TSH RECEPTOR GENE (TSHR) VARIANTS IN PEDIATRIC PATIENTS WITH NON AUTOIMMUNE HYPERTHYROTROPINEMIA

P. Scaglia, A. Keselman, P. Papendiek, L. Grunenfelder, L. Bergadà, H. Domène, A. Chiesa

CENTRO DE INVESTIGACIONES ENDOCRINOLÓGICAS "DR. CÉSAR BERGADÀ" (CEDIE), CONCET - FEI
ENDOCRINOLOGY DIVISION BUENOS AIRES CHILDREN'S HOSPITAL “RICARDO GUTIERREZ”.

GALLO 1530, C1425EFD BUENOS AIRES, ARGENTINA. WWW.CEDIE.ORG.AR

METHODS

- The whole coding sequence of TSHR gene (exons 1 to 10) and intronic flanking regions were amplified by PCR from genomic DNA and automatically sequenced.
- Different software tools were used for in silico prediction of gene variant effects:
 - PolyPhen 2 (http://genetics.bwh.harvard.edu/pph2/)
 - Mutation Taster (http://www.mutationtaster.org/)
 - SNAP (https://www.rostlab.org/services/snap/submit)
 - Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA

RESULTS

- In two patients, two uncommon heterozygous missense variants were found in exon 10.
- In two patients, two uncommon heterozygous missense variants were found in exon 10.

SUMMARY & CONCLUSIONS

- All patients were responsive to TSH stimulation (Gq/11-dependent signaling pathway).
- Expression studies should also include the double expression of this novel variant is required to establish its role in thyroid pathogenesis.

PATIENT 1: p.Ile583Thr

BACKGROUND

TSH resistance is defined as reduced sensitivity to TSH, associated with molecular defects hampering the adequate transmission of TSH stimulatory signal into thyroid cells. Non-autoimmune hypothyropitropinemia (NAH) is a state of mild TSH resistance characterized by mildly elevated TSH associated to normal thyroid hormones serum levels, in the absence of anti-thyroid antibodies.

AIM

To assess the frequency of TSHR gene variants in a pediatric population with NAH.

Subjects

Children born SGA were younger and shorter at consultation and had significantly lower TSH and higher FT3 than AGA children.

TSHR SEQUENCING: frequent SNPs (coding)

<table>
<thead>
<tr>
<th>dbSNP database reference</th>
<th>Variant</th>
<th>Exon</th>
<th>MAP in our cohort</th>
<th>dbSNP 1000 Genome MAP</th>
<th>Exome Variant Server MAP</th>
<th>P (vs dbSNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2234919</td>
<td>p.P407L/WT</td>
<td>5</td>
<td>1</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
<tr>
<td>rs1275719</td>
<td>p.A459A/WT</td>
<td>5</td>
<td>2</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
<tr>
<td>rs13951680</td>
<td>p.A459A/WT</td>
<td>5</td>
<td>2</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
<tr>
<td>rs13951680</td>
<td>p.A459A/WT</td>
<td>5</td>
<td>2</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
<tr>
<td>rs13951680</td>
<td>p.A459A/WT</td>
<td>5</td>
<td>2</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
<tr>
<td>rs13951680</td>
<td>p.A459A/WT</td>
<td>5</td>
<td>2</td>
<td>0.019</td>
<td>NS</td>
<td>0.004</td>
</tr>
</tbody>
</table>

TSHR SEQUENCING: uncommon variants

Both variants were predicted as pathogenic by different bioinformatic tools.

PATIENT 2: p.Pro407Leu

SUMMARY & CONCLUSIONS

- All patients were responsive to TSH stimulation (Gq/11-dependent signaling pathway).
- Expression studies should also include the double expression of this novel variant is required to establish its role in thyroid pathogenesis.

METHODS

- The whole coding sequence of TSHR gene (exons 1 to 10) and intronic flanking regions were amplified by PCR from genomic DNA and automatically sequenced.
- Different software tools were used for in silico prediction of gene variant effects:
 - PolyPhen 2 (http://genetics.bwh.harvard.edu/pph2/)
 - Mutation Taster (http://www.mutationtaster.org/)
 - SNAP (https://www.rostlab.org/services/snap/submit)
 - Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA

RESULTS

- In two patients, two uncommon heterozygous missense variants were found in exon 10.
- In two patients, two uncommon heterozygous missense variants were found in exon 10.

SUMMARY & CONCLUSIONS

- All patients were responsive to TSH stimulation (Gq/11-dependent signaling pathway).
- Expression studies should also include the double expression of this novel variant is required to establish its role in thyroid pathogenesis.

TSHR SEQUENCING: uncommon variants

Both variants were predicted as pathogenic by different bioinformatic tools.

PATIENT 2: p.Pro407Leu

SUMMARY & CONCLUSIONS

- All patients were responsive to TSH stimulation (Gq/11-dependent signaling pathway).
- Expression studies should also include the double expression of this novel variant is required to establish its role in thyroid pathogenesis.

METHODS

- The whole coding sequence of TSHR gene (exons 1 to 10) and intronic flanking regions were amplified by PCR from genomic DNA and automatically sequenced.
- Different software tools were used for in silico prediction of gene variant effects:
 - PolyPhen 2 (http://genetics.bwh.harvard.edu/pph2/)
 - Mutation Taster (http://www.mutationtaster.org/)
 - SNAP (https://www.rostlab.org/services/snap/submit)
 - Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA

RESULTS

- In two patients, two uncommon heterozygous missense variants were found in exon 10.
- In two patients, two uncommon heterozygous missense variants were found in exon 10.

SUMMARY & CONCLUSIONS

- All patients were responsive to TSH stimulation (Gq/11-dependent signaling pathway).
- Expression studies should also include the double expression of this novel variant is required to establish its role in thyroid pathogenesis.