A Leu402Pro mutation of the non-HLA gene IL18RAP in aggressive neonatal type 1 diabetes mellitus

Mirjam Dirlewanger1, Jean-Louis Blouin2, Jeremy Bevillard1,2, Federico Santoni1,2, Valerie M. Schwitzgebel1
1 Children’s University-Hospital, Pediatric Endocrine and Diabetes Unit, Geneva, Switzerland
2 University Medical Center, Genentech Medicine and Development, Geneva, Switzerland

 Disclosure statement: The authors declare no conflict of interest

Background

Neonatal diabetes mellitus (NDM) is defined by severe hyperglycemia appearing before six months of age. It occurs in about 1 in 200,000 live births and most cases are known to be of monogenic origin. Classical autoimmune type 1 diabetes mellitus (DM) is exceptional in this age group (<1%). Single genes defects leading to type 1 DM associated with complex autoimmune phenotypes have been identified in cases of AIRE, FOXP3 and SIRT1 genes mutations. Recently non-HLA type 1 DM susceptibility genes, such as IL18RAP, influencing the rate of progression to diabetes among children with multiple autoantibodies have been described.

Methods

Genetic analysis were performed by Sanger sequencing of selected genes known to cause NDM and by a targeted next-generation sequencing assay. This assay was performed by sequencing (PGM, Ion Torrent) DNA selected for all coding and splicing region of 323 genes using the Haloplex technology (Agilent technologies, Santa Clara, USA). Sequencing raw data were analyzed using a locally developed pipeline integrating BWA, SAM, PINDEL and ANNOVAR algorithms. Most prominent variants were selected according to the score of prediction of damaging effects on the respective proteins using SIFT, Polyphen-2 and confirmed by Sanger sequencing.

Case report & Results

We report the case of a three months old boy, born at term with a normal birth weight of 3080 g, who was thought to have sepsis. The first blood results however showed severe ketoacidosis (Table 1) and fluid replacement and IV insulin therapy was started rapidly. The continuous subcutaneous insulin infusion (1U/kg/d) with diluted insulin 1:10 could be introduced after 48h. The child grew regularly and psychomotor milestones were acquired normally during his follow-up.

HbA1c was 6.4%. The anti-GAD65 antibody (14.9 El/mL, N<10) was positive and increased to 328 El/mL after two months. The mother’s anti-GAD65 antibodies were negative (Fig. 1). Pancreatic ultrasound and fecal elastase level were within normal limits, as well as thyroid function tests. HLA genotyping confirmed a high risk for type 1 DM with homozygosity for HLA DR3-DQ2. No mutation was found by direct sequencing of KCNJ11, ABCCB, INS and FOXP3 genes. The targeted next-generation sequencing assay revealed a p.Leu402Pro mutation of IL18RAP, confirmed by direct sequencing (Fig. 2). The mutation was damaging (SIFT: 0.15; Polyphen-2: 0.9).

Discussion & Conclusion

We concluded that our patient has a type 1 DM, based on increasing anti-GAD antibodies and high-risk HLA genotyping. Maternal antibody transfer could be eliminated. A monogenic form of NDM secondary to a KATP channel or an INS mutation could be excluded, as well as a mutation of FOXP3 or AIRE.

Current genetic testing are restricted to small number of genes and multiple gene analyses in a single test use panels covering up to hundred of genes, but here we used massive parallel analysis of more than 300 genes, which revealed the Leu402Pro mutation in the IL18RAP gene.

Type 1 DM is characterized by T-cell-mediated autoimmune destruction of pancreatic β-cells and IL18 primarily produced by macrophages is associated with such a Th1 response (Fig. 3). The receptor is composed of IL18R1 and the IL18R accessory protein (IL18RAP). The functional effect of this Leu402Pro mutation on IL18RAP probably involve the IL18 pathway, IFNγ production and T-cell helper 1 differentiation. This case illustrates an extremely early and aggressive onset of diabetes in infancy in the presence of a novel mutation in the type 1 diabetes susceptibility gene IL18RAP combined with a high risk HLA genotype.