RANKL and osteoprotegerin serum levels in obese children and adolescents

Maria Felicia Faienza (1), Maria Rosaria Vulpi (1), Laura Piacente (1), Annamaria Ventura (1), Antonella Lonero (1), Vincenza Luce (1), Fabrizia De Palma (1), Angelo Acquafredda (1), Clara Zecchino (1), Antonio Minenna (2), Maurizio Delvecchio (1), Maria Granzo (3), Luciano Cavallo (1), Giacomo Brunetti (3).

(1) Department of Biomedical Sciences and Human Oncology, Section of Pediatrics, University "A. Moro", Bari, Italy
(2) Endocrinology Section, ASL Bari, Italy
(3) Department of Basic Medical Sciences, Neuroscience, and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro", Bari, Italy;

The authors disclose any conflicts of interest

BACKGROUND

There is growing evidence of a correlation between fat and bone metabolism at both the clinical and molecular levels, although the systemic regulators have not been clearly identified. The receptor activator of nuclear factor κB ligand (RANKL) and its soluble decay receptor, osteoprotegerin (OPG), are involved in bone resorption and vascular calcification. In particular, RANKL promotes differentiation and activates mature osteoclasts to reabsorb bone by binding to its specific receptor RANK. OPG competes with RANK in binding to RANKL, preventing its osteoclastogenic effect. Moreover, OPG levels have been related with insulin resistance in adult obese subjects.

OBJECTIVE AND HYPOTHESES

We aimed: 1. to evaluate RANKL and OPG serum levels in obese children and adolescents and healthy lean controls; 2. to investigate correlation between metabolic alterations and OPG levels; 3. to correlate OPG and RANKL levels with bone status assessed by QUS.

METHODS

Twenty-five subjects (16 males, median age 10.8 ± 2.6), with body mass index (BMI) >95th centile for age and sex, were enrolled. BMI standard deviation score (BMI-SDS) was derived from population standard. As control group were recruited 28 non-obese subjects (18 males, median age 10.8 ± 2.6 years), age- and sex-matched. All subjects underwent anthropometric measurements, evaluation of lipid profile, glucose and insulin levels, and HOMA-IR. RANKL and OPG levels were measured in the sera from all obese subjects and controls. Bone status was assessed by QUS through BTT-Z-score and Ad-Sos-Z-score evaluation.

RESULTS

Obese children have higher RANKL (p=0.01) and lower OPG (p=0.006) serum levels compared with controls.

CONCLUSIONS

Our results pointed out to a complex alteration in obese children involving adipose tissue, bone and glucose metabolism, which is orchestrated by RANKL/OPG/RANK axis.