Coexistence of multiple defects of pituitary hormones, short neck, hyposomatotropism and bilateral sensorineural hearing loss make diagnosis of **CONGENITAL MULTIPLE PANHYPOPITUITARISM (CMPHD)** associated with LHX3 GENE MUTATION.

Functional studies demonstrated that this variation determines the inability of the synthesized protein to bind to DNA altering activity of the normal protein.

PRENATAL HISTORY
- Prenatal US: **IUGR, rhizomelia, polihidramnios**
- Amniocentesis: **karyotype 46, XY**

AT BIRTH, at 39 GW by emergency CS:
- weight and length <3rd percentile
- head circumference < 10-25th percentile
- Physical examination: short neck, cryptorchidism and microphallus

POSTNATAL PERIOD:
- **early** episode of **hypoglycemia** (20 mg/dl - 1.11 mmol/l) \(\rightarrow\) infusion of D10% through umbilical vein catheter followed by naso-gastric feeding
- **recurrent** episodes of **hypoglycemia** from 8th-14th day of life \(\rightarrow\) corticosteroids
- jaundice with indirect bilirubin in 1st week \(\rightarrow\) several cycles of **phototherapy**

Laboratory tests
- TSH, fT4, fT3 ↓
- PRL ↓
- FSH ↓
- LH ↓
- GH ↓
- ACTH, cortisol ↓

INVESTIGATION in the 1st month of life
- **CNS US:** normal
- **Echocardiography:** normal
- **Thorax, abdomen, full skeleton X ray:** no evident abnormalities
- **Abdomen US:** mild renal pelvis dilatation, no other abnormalities
- **CNS MRI:** no morphologic alterations of pituitary gland and stalk

Recalled at hypothyroidism screening: pathological ABR and diagnosis of bilateral sensorineural hearing loss.

Coexistence of multiple defect of pituitary hormones, short neck, hyposomatotropism and bilateral sensorineural hearing loss make diagnosis of **CONGENITAL MULTIPLE PANHYPOPITUITARISM (CMPHD) associated with LHX3 GENE MUTATION.**

Functional studies demonstrated that this variation determines the inability of the synthesized protein to bind to DNA altering activity of the normal protein.

Because of the same mutation was detected in his mother, asymptomatic, we excluded that this mutation alone is the cause of baby G. panhypopituitarism. SNP’s array excluded hemizygosity: this phenotype may be correlated with a digenic form.

Now baby G. is treated with L-tiroxina, hydrocortisone and rhGH and underwent bilateral orchidopexy.
