Ovarian and uterine development and hormonal feedback mechanism in a 46 XX Patient with CYP19A1 Deficiency under low dose Estrogen Replacement

Marie-Anne Burckhardt1, Verena Obmann2, Marco Janner1, Primus E. Mullis1
Paediatric Endocrinology, Diabetology & Metabolism, University Children's Hospital, Inselspital, 3010 Bern, Switzerland
Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, 3010 Bern, Switzerland

The authors have nothing to disclose.

Background
Aromatase deficiency may result in a complete block of estrogen synthesis. In females, this results in virilisation at birth, ovarian cysts in prepuberty and lack of pubertal development but virilisation, thereafter.

Objective and methods
We studied the impact of oral 17β-estradiol treatment on ovarian and uterine development, and on LH/FSH and inhibin B during the long-term follow-up of a girl harboring compound heterozygote point mutations in the CYP19A1 gene (1).

Results
At the beginning in early childhood low doses of oral 17β-estradiol (starting with 0.1mg daily) were given. In the follow-up doses were adequately increased (until 2.0 mg daily in late puberty) to ensure normal height velocity and bone age maturation. During prepuberty, this treatment resulted in normal uterine (Figure 1A) and almost normal development of ovarian volume (Figure 1B), as well as number and size of follicles (Figure 2). Only at the beginning of puberty we found a minimal increase of ovarian volume compared to literature, normalizing when gestagen replacement was added in late puberty. Regarding hormonal feedback mechanisms, inhibin B levels were in the upper normal range during childhood and puberty (Figure 4A). Low doses of estradiol did not suffice to achieve physiological gonadotropin levels in late prepuberty and puberty (Figure 4B). However, when estradiol doses were further increased in late puberty levels of both FSH and LH declined with estradiol levels within normal range (Figure 3).

Conclusion
This girl suffering from a complete aromatase deficiency provided a unique model of how ovarian and uterine development in relation to E2, LH, FSH and inhibin feedback may normally progress from infancy to adolescence. From this case, we may learn and extrapolate which doses of estradiol are required for normal ovarian and uterine development.

References: