Nonclassic lipoid adrenal hyperplasia with R272C STAR mutation: a case report

Tatsuya Miyoshi1,2, Masaki Takagi1, Yukihiro Hasegawa1

1 Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
2 Division of Pediatric Endocrinology and Metabolism, Shikoku Medical Center for Children and Adults, Kagawa, Japan

Disclosure Statement The authors have nothing to declare.

Background

The steroidogenic acute regulatory protein (StAR) is crucial for the transportation of cholesterol to the mitochondria, where it is converted to pregnenolone. Complete loss of StAR function impairs adrenal and gonadal steroidogenesis since the fetal period, called congenital lipoid adrenal hyperplasia (CLAH). Nonclassic lipoid adrenal hyperplasia (NCLAH) is a recently recognized disorder characterized by partial StAR function1, and several mutations associated with NCLAH have been reported2.

Objective

To report clinical, biochemical, genetic, and functional data for a mutation of the STAR gene.

Patient

The patient was a 12-year-old Japanese male. He was born with normal male genitalia, and had hyperpigmentation. At 2 years of age, he presented with adrenal failure accompanied by infection. His prior medical history was uneventful. Serum cortisol was undetectable, and did not respond to ACTH stimulation. Aldosterone showed a low response in the furosemide-upright test, and a CT scan showed normal-sized adrenal glands. He was diagnosed as familial glucocorticoid deficiency, and treated with hydrocortisone.

At 11 years of age, he had normal pubertal development, but his serum dehydroepiandrosterone sulfate (DHEA-S) level was inappropriately low.

Discussions

Our patient presented with adrenal failure at 2 years of age and normal male external genitalia. This mild phenotype may be related to residual StAR activity.

Previous reports showed that STAR mutations in individuals with NCLAH retained 3–50% of in vitro WT activity3. R272C had 39% activity, which may have contributed to the mild phenotype. The D106/R272 hydrogen bond forms a part of the cholesterol binding pocket4. R272C was predicted to disrupt the hydrogen bond, and undergo a conformational change induced by the disulfide bond. On the other hand, StAR activity did not differ significantly between K238fs and an empty vector. K238fs/Q258X is associated with CLAH5, so K238fs was considered a null mutation, clinically.

The carrier frequency for these mutations may be high in Japan as Q258X. K238fs/Q258X was previously reported in Japanese patients with CLAH6, and R272C/Q258X was recently reported in a Japanese patient with primary adrenal failure without enzymatic defect7.

Results

Compound heterozygous mutations, K238fs and R272C, were identified (Fig. A). The K238fs and R272C mutants retained 18.3 ± 1.3% and 39.0 ± 3.9% of the wild-type STAR activity, respectively (Fig. B). Western blot analysis and subcellular localization revealed no significant differences between wild-type and these mutants (Fig. C, D).

Methods

We analyzed all coding exons and flanking introns of STAR by PCR-direct sequencing, the ability of STAR mutants to convert cholesterol to pregnenolone, protein expression, and subcellular localization. Pregnenolone was determined by LC-MS/MS.

References