Endocrine Abnormalities in Phosphoglucomutase 1 Deficiency

B. Müksch, E. Morava, D. Lefeber, H. Claahsen-von der Grinthen, E. Korsch
Department of Pediatrics, Children’s Hospital, City of Cologne, Cologne, Germany

Conclusion:
- Phosphoglucomutase 1 (PGM1) Deficiency affects glycogen metabolism, as well as protein glycosylation.
- Endocrine abnormalities appear to be a consistent feature of PGM1 deficiency, resulting in hypogonadotrophic hypogonadism and growth retardation.

Introduction:
- **Phosphoglucomutase 1 Deficiency** previously known as glycogenosis type XIV, is caused by mutations in the *PGM1* gene resulting in altered conversion from Glucose-1-phosphate to Glucose-6-phosphate (shown in Fig. 1).
- Because Glucose-1-phosphate is also involved in metabolic processes of the glycosylation of proteins, PGM1 deficiency can result in abnormalities of hormones and their binding proteins, which is well known in Congenital Disorders of Glycosylation (CDG).
- We present a girl with PGM1, featuring endocrine abnormalities also found in patients with CDG.

Case Report:
First consultation: age 13;7 years, with growth retardation and lack of pubertal development (Fig. 2)
Medical history: cleft soft palate, malignant hyperthermia, myopathy, hepatopathy, fasting hypoglycemia, dilated cardiomyopathy, normal intelligence

First results:
- abdominal sonography: prepubertal uterus and ovary glands
- bone age: 13 years (G+P)
- cranial MRI: normal
- echocardiography: SF 25%, LV 60 mm, MI II°
- chromosomal analysis: 46, XX

Endocrine findings:
- **Low:** E2 < 10 pg/ml (n: 16,2-136,3), IGF1: 79 ng/ml (n: 188-510), IGFBP3 1,82 µg/ml (n: 2,7-10), TBG: 1,3 mg/dl (n: 2,0-3,0), transcortin: 28 g/ml (n: 40-60)
- **Normal:** cortisol 9,4 µg/dl, fT4 1,16 ng/dl (n: 2,7-10) TBG: 1,3 mg/dl (n: 2,0-3,0), transcortin: 28 µg/ml (n: 40-60)
- **GnRH-test**
 - LH basal <0,1 U/l, max. 2,9 U/l
 - FSH basal 1,7 U/l, max. 7,6 U/l

Proceedings:
- Induction of puberty at the age of 14;8 years with standard hormone therapy
 - normal breast development
 - age of menarche 17,1 years
 - catch-up growth with pubertal growth spurt (however adult height below target height) (Fig. 2)
- PGM1 enzyme activity in skin fibroblasts: 1.3 % of controls
- PGM1 gene: heterozygous for c.989G>C (p.G330R) and 1129G>A (p.E377K)

Fig. 1: PGM1-CDG

Fig. 2 growth chart

E2 = start estradiol treatment
B2 = tanner stadium B2
D = start of dietary treatment
M = menarche

Chart 1: Comparison of endocrine findings

<table>
<thead>
<tr>
<th></th>
<th>PGM1-CDG</th>
<th>CDG (literature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid</td>
<td>euthyroid</td>
<td>not specified</td>
</tr>
<tr>
<td>Growth</td>
<td>retardation</td>
<td>retardation approx. 80%</td>
</tr>
<tr>
<td>Puberty</td>
<td>delayed</td>
<td>delayed</td>
</tr>
<tr>
<td>Gonadotropins</td>
<td>hypergonadotropic</td>
<td>hypogonadism due to inactive FSH or hypergonadotropic hypogonadism</td>
</tr>
<tr>
<td>Binding globulins (TBG/CBG)</td>
<td>decreased</td>
<td>not specified</td>
</tr>
<tr>
<td>IGF1 and IGFBP3</td>
<td>decreased</td>
<td>decreased</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>documented</td>
<td>frequently</td>
</tr>
</tbody>
</table>

Fig. 3: GnRH-test