

Exposure to phthalates and phenols in relation to gestational blood glucose homeostasis

B. G. Fisher^a, H. Frederiksen^b, A. M. Andersson^b, A. Juul^b, A. Thankamony^a, K. K. Ong^c, D. B. Dunger^a, I. A. Hughes^a, C. L. Acerini^a ^aDepartment of Paediatrics, University of Cambridge, Cambridge, United Kingdom; ^bDepartment of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom

Introduction

- Late pregnancy is characterised by insulin resistance, which can lead to gestational diabetes mellitus (GDM)1.
- Endocrine disrupting chemicals (EDCs), such as phthalates and bisphenol A (BPA), have been associated with insulin resistance and type 2 diabetes in non-pregnant adults²⁻⁵.
- By contrast, recent studies of pregnant women have found:
- Negative relationships between phthalates and stimulated blood glucose⁶;
- \circ No association between phthalates or BPA and GDM^{7,8}.
- No studies have examined triclosan (TCS) in relation to GDM, or gestational insulin resistance (IR) or secretion in relation to EDC exposure.

Method

- 232 mothers without type 1/2 diabetes with singleton male pregnancies were recruited from a single UK centre as part of a large prospective study (Cambridge Baby Growth Study).
- Serum was collected at 10-17 weeks of gestation.
- 18 EDCs (16 metabolites of 9 phthalate diesters, 9 phenols) were measured using liquid chromatography/tandem mass spectrometry.
- GDM was diagnosed from an oral glucose tolerance test at 28 weeks of gestation using IADPSG criteria.
- Homeostasis Model Assessment (HOMA)-IR and β-cell function were calculated.
- Regressions controlled for age, BMI, deprivation index, ethnicity, smoking, and parity.

Objective

• To investigate the relationship between maternal phthalate and phenol exposure at 10-17 weeks of gestation and glucose homeostasis at 28 weeks of gestation.

Results

Maternal characteristics (mean ± SD)

	Mothers with GDM (n = 47, 20.3%)	Mothers without GDM (n = 185, 79.7%)	P value
Age (years)	33.1 ± 4.4	33.7 ± 3.8	0.30
Pre-pregnancy BMI (kg/m²)	25.4 ± 5.1	23.7 ± 3.7	0.051
Ethnicity White Other	28 (100%) 0 (0%)	119 (96.7%) 4 (3.3%)	0.75
Current smoker	1/47 (2.1%)	4/185 (2.2%)	0.99
Parity 0 I ≥2	22 (46.8%) 19 (40.4%) 6 (12.8%)	88 (47.6%) 75 (40.5%) 22 (11.9%)	0.99
Index of Multiple Deprivation (units)	9.43 ± 3.48	9.35 ± 4.27	0.90

Associations with parameters of glucose homeostasis

 Amongst mothers without GDM, mono-(2-ethylhexyl) phthalate (MEHP)† and mono(carboxyisooctyl) phthalate (MCiOP)† were associated with 120-min plasma glucose (adjusted $\beta = 0.297$ and 0.238, p = 0.002 and 0.013).

• No EDCs were associated with HOMA-IR, HOMA-β-cell function, or disposition index.

EDC characteristics

- 6 phthalate metabolites (MEP, MiBP, MnBP, MEHP, MECPP, MCiOP) and 3 phenols (BPA, TCS, BP-3) were detectable in >60% serum samples.
- Median concentrations were 1.56, 3.78, 1.34, 1.14, 0.52, 0.18, 1.76, 0.93, and 0.34 µg/l, respectively.

Associations with incident GDM

 Only mono-isobutyl phthalate (MiBP)[†] and TCS were significantly associated with incident GDM in continuous and quartile analyses.

† Phthalate metabolite parent compounds: MiBP: di-isobutyl phthalate; MEHP: di-(2ethylhexyl) phthalate; MCiOP: di-isononyl phthalate.

Conclusion

 Our results provide further evidence of a diabetogenic effect of phthalates, and suggest for the first time a possible ameliorating effect of TCS.

References

- National Collaborating Centre for Women's and Children's Health, 2015. http://www.nice.org.uk/guidance/ng3/evidence/full-guideline-3784285
- James-Todd, T. et al., 2012. Environmental Health Perspectives, 120(9), pp. 1307–1313. Beydoun, H.A. et al., 2014. Annals of Epidemiology, 24(2), pp.90–97.
- 4. Dirinck, E. et al., 2015. Environmental Research, 137, pp.419-423. 5. Aekplakorn, W., Chailurkit, L.-O. & Ongphiphadhanakul, B., 2015. Journal of diabetes, 7(2), pp.240-9.
- 6. Robledo, C.A. et al., 2015. International Journal of Hygiene and Environmental Health, 218(3), pp.324-330.
- Robledo, C. et al., 2013. Journal of toxicology and environmental health. Part A, 76(14), pp.865–73.
- 8. Shapiro, G.D. et al., 2015. Environment International, 83, pp.63-71.

