The prevalence of different subtypes of maturity-onset diabetes of the young in Russian Federation as defined by targeted next-generation sequencing

Zubkova N.A.¹, Gioeva O.A.¹, Tikhonovich Y.V.¹, Vasilyev E.V.¹, Petrov V.M.¹, Malievsky O.A.², Kivaev A.V.³, Timofeev A.V.⁴, Tiulpakov A.N.¹

¹ Endocrinology Research Centre, Moscow; ² Republican Children's Clinical Hospital, Ufa; ³ Ural State Medical University, Ekaterinburg; ⁴ I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation

Objective: to evaluate the frequency of different subtypes of MODY in the Russian population using a targeted next generation sequencing (NGS)

Criteria of inclusion:

- diabetes or intermediate hyperglycemia;
- absence of β-cell autoimmunity (ICA, GAD, IA2, IAA antibodies);
- preserved C-peptide secretion

Subjects:

224 subjects (0.3-25 yrs) males=118, females=106

Methods:

- PGM semiconductor sequencer (Ion Torrent, Life Technologies);
- Custom Ion AmpliSeq[™] 'Diabetes panel':

 ABCC8, AKT2, BLK, CEL, EIF2AK3,

 FOXP3, GCG, GCGR, GCK, GLIS3,

 HNF1A, HNF1B, HNF4A, SLC16A1,

 KLF11, INS, INSR, KCNJ11, PAX4,

 PPARG, PDX1, PTF1A, NEUROD1,

 RFX6, GLUD1, WFS1, ZFP57, SCHAD

(28 genes, 488 amplicons);

- Bioinformatic analysis: Torrent Suite (Ion Torrent, Life Technologies) and ANNOVAR* (annovar.openbioinformatics.org) software packages;
- Non-synonymous sequence variants were rated as "probably pathogenic" if they had minor allele frequency <1% and pathogenic ljb database scores

Results:

- 65.6 % of patients 129 pathogenic or "probably pathogenic" mutations;
- 5 patients digenic mutations

Patient	Digenic mutations
1	HNF1B+CEL
2	HNF1B+GCK
3	HNF1A+GLIS 3
4	HNF1A+INSR
5	ABCC8+GLUD1

Conclusion:

- MODY2 is the most prevalent in the studied population
- NGS is useful in identifying rare subtypes of MODY;
- Some cases of MODY may be associated with digenic mutations

*Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data Nucleic Acids Research, 38:e164, 2010

Funding: Alfa-Endo P Aid Foundation (CAF)

Funding: Alfa-Endo Program of Charities Aid Foundation (CAF) Russia

