

The role of \(\beta\)-TrCP as a compensatory negative regulator in the successful GH/GHR and EGF/EGFR signalling in GHTD.

Eirini Kostopoulou¹, Andrea Paola Rojas-Gil², Alexia Karvela¹, Bessie E. Spiliotis¹

- 1. Pediatric Endocrine Research Laboratory, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics,
 University of Patras School of Medicine, Patras, Greece.
 - 2. Faculty of Human Movement and Quality of Life Sciences, Department of Nursing, University of Peloponnese.

INTRODUCTION

The authors have nothing to disclose

- > GHTD is characterized by:
 - over-expression of the E3 ubiquitin ligase, CIS.
 - excessive GHR endocytosis and degradation
 - impaired STAT3 phosphorylation¹
- Induction of GHTD fibroblasts with 200μg/L hGH (GH200) and silencing mRNA CIS (siCIS) or with high dose of hGH, 1000 μg/L (GH1000), suppresses excessive CIS and restores normal GH signalling.
- Crosstalk between the GH and EGF signalling pathways is important for normal cellular development. ²
- The ubiquitin ligase SCF^{TrCP} is required for internalisation of the growth hormone receptor (GHR).³
- β-transducin repeat-containing protein (β-TrCP), the F-box protein of the E3 ubiquitin ligase SCF, also plays a role in GHR endocytosis.³

The ubiquitin ligase system: β-TrCP is the substrate recognition subunit of the E3 ligase SCF^{β-TrC}

OBJECTIVE

To study the role of β-TrCP in the negative regulation of the GH/GHR and EGF/EGFR pathways in normal and GHTD cells.

METHODS

- * Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control child.
- * The protein expression and the cellular localization of β-TrCP were studied by Western Immunoblotting and Immunofluorescence, respectively:
- a) At the basal state and after induction with 200 μ g/L hGH (GH200), either with or without siRNA CIS.
- b) At the basal state and after inductions with 200 $\mu g/L$ hGH (GH200), 1000 $\mu g/L$ hGH (GH1000) or 50 ng/ml EGF.

RESULTS

Figure 1.

After GH200/siCIS, the protein expression and cytoplasmic-membrane localization of β -TrCP were increased in the control and in the patient.

Figure 2.

- After induction with GH200 in the control and GH1000 in the patient (*inductions of successful GH signalling*), the protein expression and cytoplasmic-membrane localization of β-TrCP were increased.
- After induction with EGF, the protein expression and cytoplasmic-membrane localization of β -TrCP were also increased in both the control and the patient.

CONCLUSIONS

- * When CIS is reduced, either after silencing of the CIS gene or after inductions of successful GH signalling, β-TrCP is increased and this may reflect a compensatory mechanism of negative regulation of the GH/GHR pathway in the control's and the patient's fibroblasts.
- * β-TrCP also seems to participate in the negative regulation of the EGF/EGFR pathway in the control's and the patient's fibroblasts.
- β-TrCP seems to be activated more readily in the control's fibroblasts than in the GHTD's fibroblasts after inductions of successful GH and EGF signalling.

REFERENCES

- 1) Rojas Gil AP, Kostopoulou E, Karageorgou I, Kamzelas K & Spiliotis BE. Increased growth hormone receptor (GHR) degradation due to over-expression of cytokine inducible SH2 domain-containing protein (CIS) as a cause of GH transduction defect (GHTD), Journal of Pediatric Endocrinology and Metabolism 2012; 25(9-10): 897–908.
- 2) Huang Y, Kim SO, Jiang J & Frank SJ. Growth hormone-induced phosphorylation of EGF receptor in 3T3-F442A cells: modulation of EGF-induced trafficking and signaling. Journal of Biological Chemistry 2003; 278:18902-18913.
- 3) Kerkhof P, Westgeest M, Hassink G, Strous GJ. SCF^{TrCP} acts in endocomal sorting of the GH receptor, Experimental Cell Research 2011; 317:1071-1082

GH and IGF Physiology
Eirini Kostopoulou

