# Efficacy of Supplemental Liothyronine for Patients with Congenital Hypothyroidism and Pituitary Resistance to Thyroid Hormone



Laura Paone MD<sup>1</sup>, Abby F. Fleisch MD MPH<sup>2</sup>, Henry Feldman PhD<sup>3</sup>, Marco Cappa MD<sup>1</sup>, Rosalind Brown MD<sup>2</sup> and Ari J. Wassner MD<sup>2</sup>



<sup>1</sup>Endocrinology and Diabetic Unit, Bambino Gesù Children's Hospital, Rome, Italy; <sup>2</sup>Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States and <sup>3</sup>Clinical Research Center, Boston Children's Hospital, Boston, MA, United States. *The authors have no financial relationships to disclose or conflicts of interest to resolve.* 

#### **Background**

- Thyroid hormone replacement is mandatory for infants with congenital hypothyroidism (CH) to optmize neurodevelopmental outcomes<sup>1</sup>
- Guidelines recommend levothyroxine (LT4) monotherapy<sup>1</sup>
- BUT in up to 1/3 of patients, elevated TSH fails to normalize despite LT4 treatment sufficient to achieve normal or even elevated circulating levels of free T4, termed "pituitary resistance to thyroid hormone"<sup>2</sup>
- To normalize their TSH, these patients require supranormal circulating levels of T4, which may be harmful for neurocognitive development<sup>3</sup>

 Liothyronine (T3) has been proposed as a supplemental therapy for such patients, but data on its use and efficacy are limited<sup>4</sup>



#### **Objectives**

Through a retrospective chart review, we sought to test the hypothesis that supplemental T3 treatment will decrease both TSH and T4 in patients with CH and pituitary resistance to thyroid hormone.

#### <u>Methods</u>

#### Study Population

- •We electronically searched Boston Children's Hospital records from 1999-2014 for patients with CH based on ICD9 code and serum TSH > 20 mIU/L at diagnosis
- •We identified 6 patients treated initially with LT4 monotherapy, in whom supplemental T3 was added because of failure to normalize the TSH

#### Statistical Analysis

- •We used t-tests to compare thyroid function and anthropometrics measured during the two years before versus two years after starting T3 treatment.
- Data obtained prior to 1 month of age were excluded to avoid inclusion of laboratories prior to LT4 treatment.
- •We compared the following within each participant:
- ➤TSH: mean, % >5 mIU/L, % >10 mIU/L, area under the curve (AUC)
- ➤FT4 or T4: % > normal for age , AUC
- ➤T3: mean, AUC
- ➤ Anthropometrics: weight, height, and BMI z-scores

#### <u>Results</u>

Table 1. Baseline characteristics (n=6)

|                            | Median (range)     |  |
|----------------------------|--------------------|--|
| Birth                      |                    |  |
| Sex                        | 4M / 2F            |  |
| Gestational age, wks       | 41 (30-41)         |  |
| Birth weight, kg           | 4.0 (1.8-4.2)      |  |
| Diagnosis                  |                    |  |
| TSH at diagnosis, mIU/L    | 220 (34-460)       |  |
| Free T4 at diagnosis,      | 0.3 (0.3-1.1)      |  |
| ng/dL                      | 0.5 (0.5-1.1)      |  |
|                            | Normal eutopic (1) |  |
| Thyroid anatomy            | Ectopic (1)        |  |
|                            | Agenesis (1)       |  |
|                            | Unknown (3)        |  |
| LT4 treatment              |                    |  |
| Age at LT4 initiation, wks | 1.1 (0.7-5.3)      |  |
| Initial LT4 dose, mcg      | 50 (12.5-50)       |  |
| T3 treatment               |                    |  |
| Age at T3 initiation, yrs  | 3.5 (0.5-11.7)     |  |
| Before T3                  |                    |  |
| Follow-up, yrs             | 2.0 (0.4-2.0)      |  |
| Thyroid function tests, #  | 5.5 (5-10)         |  |
| After T3                   |                    |  |
| Follow-up, yrs             | 1.5 (0.4-2.0)      |  |
| Thyroid function tests, #  | 4 (1-7)            |  |
|                            |                    |  |

Table 2. Thyroid function and anthropometrics [mean (95% CI)] before versus after T3 treatment

|                                                                             | Before T3         | After T3          | р      |
|-----------------------------------------------------------------------------|-------------------|-------------------|--------|
| TSH, mean (mIU/L)                                                           | 9.16 (7.26-11.06) | 4.46 (2.86-6.06)  | 0.002  |
| TSH values > 5 mIU/L (%)                                                    | 81 (58-100)       | 31 (16-46)        | 0.001  |
| TSH > 5, AUC (mIU/L)                                                        | 4.41 (2.73-6.09)  | 1.29 (0.30-2.29)  | 0.004  |
| TSH values > 10 mIU/L (%)                                                   | 35 (10-60)        | 8 (0-19)          | 0.03   |
| TSH > 10, AUC (mIU/L)                                                       | 1.39 (0.46-2.32)  | 0.29 (0-0.59)     | 0.04   |
| FT4/TT4 values > normal (%)                                                 | 29 (0-60)         | 12 (0-28)         | 0.32   |
| Change in FT4/TT4, AUC with T3 treatment (%)                                |                   | 24 (17-31)        | 0.002  |
| Both TSH & FT4/TT4 normal (%)                                               | 15 (0-38)         | 60 (42-78)        | <0.001 |
| T3 values > normal (%)*                                                     | 0 (0-0)           | 17 (0-38)         | 0.16   |
| T3, mean (ng/dL) (%)                                                        | 153 (122-185)     | 188 (155-221)     | 0.33   |
| Weight z-score                                                              | 0.71 (-0.51-1.92) | 0.76 (-0.31-1.83) | 0.65   |
| Height/length z-score                                                       | 0.36 (-1.07-1.80) | 0.25 (-1.07-1.57) | 0.35   |
| BMI z-score                                                                 | 0.54 (-0.42-1.50) | 0.97 (0.25-1.69)  | 0.23   |
| AUC = area under curve, normalized for time, FT4 = free T4, TT4 = total T4. |                   |                   |        |

Figure. Effect of T3 treatment (---- denotes normal range)



## Conclusions

- Addition of T3 to LT4 monotherapy is associated with lower serum TSH and T4 in CH patients with pituitary resistance to thyroid hormone.
- Future studies will include a control group of untreated patients with CH and pituitary resistance from the same hospital and time period to account for improvement in pituitary resistance over time.
- Larger prospective studies are also needed to validate these findings and to investigate whether the addition of T3 improves cognitive development.

# References

- Leger, J, Oliviera, A, Donaldson, M, et al. European Society for Pediatric Endocrinology Consensus Guidelines on Screening, Diagnosis, and Management of Congenital Hypothyroidism. J Clin Endocrinol Metab. 2014; 99(2):363-84.
- Fisher, DA, Schoen EJ, LaFranchi S, et al. The Hypothalamic Pituitary Thyroid Negative Feedback Control Axis in Children with Treated Congenital Hypothyroidism. J Clin Endocrinol Metab. 2000; 85(8): 2722-7.

n=4 (mean of 2.7 checks prior and 4.5 checks after T3 treatment)

- Bongers-Schokking JJ, Resing WC, deRijke YB, et al. Congnitive Development in Congenital Hypothyroidism: Is Overtreatment a Greater Threat than Undertreatment? J Clin Endocrinol Metab. 2013; 98(11): 4499-506.
- Akcay, T, Turan S, Guran T, et al. T4 Plus T3
   Treatment in Children with Hypothyroidism and Inappropriately Elevated Thyroid-Stimulating Hormone Despite Euthyroidism on T4 Treatment. Horm Res Paediatr. 2010;73:108-114.

### **Further information**

laura.paone@opbq.net

abby.fleisch@childrens.harvard.edu

The authors have received support from the National Institutes of Health K12DK094721).



Thyroid

Laura Paone







