Prevalence of asthma symptoms and association with obesity, sedentary lifestyle and sociodemographic factors: Data from the Hellenic National Plan for the Assessment, Prevention and Treatment of Childhood obesity

¹F Karachaliou, ¹E Vlachopapadopoulou, ²Th Psaltopoulou, ³D Koutsouki, ⁴Y Manios, ³G Bogdanis, ¹I Panagiotopoulos, ⁵A Papadopoulou, ²A Chatzakis, ¹S Michalakos

- Endocrinology Dept- Growth and Development, 'P. & A. Kyriakou Children's Hospital, Athens, Greece
- 2. Dept of Hygiene, Epidemiology and Medical Statistics, Univ. of Athens, Athens, Greece
- School of Phsical Education and Sports Science, Univ. of Athens, Athens, Greece
- Dept of Nutrition and Dietetics, Harokopion Univ. of Athens, Athens, Greece 5. Dept of Social Pediatrics, 'P. & A. Kyriakou Children's Hospital, Athens, Greece

INTRODUCTION

- Emerging evidence suggests that asthma symptoms and obesity in children show similar trends in the last few decades
- Overweight/obese asthmatic children experience greater limitation of physical activity, while insufficient physical activity increases the risk for overweight/obesity, perpetuating the vicious cycle of asthma, exerciseinduced broncho-constriction, decreased physical activity and increased body weight.
- In Greece a greater than 4-fold increase in the prevalence of childhood asthma and wheezing has occurred over the last 25 years.
- Similarly an increase in the prevalence of overweight has been observed over the last decades and has been associated by some investigators with increases in asthma prevalence.

AIM

 To evaluate the prevalence of asthma symptoms and to assess its association with obesity and sociodemographic factors in a representative sample of school children from all over Greece

PATIENTS AND METHODS

- Cross-sectional study conducted from 10/2012-12/2013 (ESPA, MIS 301205)
- A pre-selected, representative elementary school cohort (N=11,751 age range) 5.8-12.5 years) was derived, using stratification and PPS methodology.
- Parents responded to questionnaires and students were measured with high sensitivity methods (height to 0.1cm, weight to 0.1kg)
- BMI was calculated and IOTF cut offs were used to classify the children.
- Socio-economic status index was calculated (SES index range 0-13) on years of parental education, rented vs owned residence, m2/person, number of vehicles
- Time spent on sedentary activities (e.g., watching television, working on a computer, playing video games) was assessed by the questionnaire which has been previously validated
- The approved Greek version of the International Study for Asthma and Allergies in Childhood (ISAAC) core questionnaire was employed.
- Asthmatic symptoms were treated as the main factor (dependent variable) for the analysis and the following variables were tested as potential risk factors for asthmatic symptoms:
 - sex,
 - rural-urban status (urban; semi-urban vs. rural),
 - overweight/obese (vs. normal weight),
 - age (years),
 - latitude of the prefecture (degrees),
 - SES index and
 - sedentary activities (hours).
- Two-step procedure was followed, namely univariate and multivariate logistic regression analysis.
- At the multivariate analysis, only the factors that were proven significant at the univariate approach were entered (backward selection of variables).
- The level of statistical significance was set at 0.05. Statistical analysis was performed using STATA/SE version 13 (Stata Corp., College Station, TX, USA).

Table 1. Characteristics of the study population (n=11,751).

Parameters	N (%)
Asthmatic symptoms	
Yes	3643 (31.0)
No	8108 (69.0)
Rural –Urban status	
Urban	3765 (32.1)
Semi-urban	3470 (29.5)
Rural	4516 (38.4)
BMI status	
Normal weight	7473 (63.6)
Overweight	3050 (26.0)
Obese	1228 (10.5)
Continuous variables	mean±SD (range)
Age (years)	9.1±1.7 (5.8-12.5)
Latitude (degrees)	39.0±1.6 (35.2-41.2)
SES index	7.2±2.3 (0-13)
Sedentary activities (hours/week)	6.4±3.9 (0-36)

Table 2. Results of the univariate logistic regression analysis regarding risk factors for the asthmatic symptoms in the examined population (n=11,751)

Prevalence of Category or increment OR (95% CI) asthmatic symptoms in

	the compared groups			
Male sex	1926/5798 vs. 1717/5953	Male vs. female	1.22 (1.13-1.33)	<0.001
Rural-urban				
status	1225/3765 vs.1395/4516	Urban vs. rural	1.08 (0.98-1.18)	0.109
Urban	1023/3470 vs.1395/4516	Semi-urban vs. rural	0.94 (0.85-1.03)	0.174
Semi-Urban				
вмі				
Overweight	996/3050 vs. 2222/7473	Overweight vs. normal weight	1.15 (1.05-1.25)	0.003
Obese	425/1228 vs. 2222/7473	Obese vs. normal weight	1.25 (1.10-1.42)	0.001
Age	Not applicable	1 year increase	0.97 (0.95-0.99)	0.006
Latitude	Not applicable	1 degree increase	0.99 (0.97-1.02)	0.653
SES index	Not applicable	1 point increase	1.01 (0.99-1.03)	0.435
Sedentary activities (hours)	Not applicable	5 hours increase	1.08 (1.02-1.14)	0.004

Table 3. Results from the logistic multivariate analysis regarding risk factors for asthmatic symptoms in the examined population (n-11

	Category or increment	OR (95% CI)	р
Sex	Male vs. female	1.22 (1.13-1.33)	<0.001
вмі			
Overweight	Overweight vs. normal weight	1.13 (1.03-1.25)	0.010
Obese	Obese vs. normal weight	1.27 (1.11-1.46)	<0.001
Age (yrs)	1 year increase	0.96 (0.94-0.98)	<0.001
Sedentary activities (hours)	5 hours increase	1.07 (1.01-1.13)	0.013

CONCLUSIONS

- In conclusion from all studied parameters, the presence of asthma symptoms was related to overweight/obesity and sedentary lifestyle irrespectively of socioeconomic or regional (urban vs rural) factors.
- In Greek literature PANACEA study revealed prevalence of asthmatic symptoms in 27.6% of boys and in 20.4% of girls, which was associated with weight gain and absence of physical activity
- In ISAAC study (1994) the presence of asthmatic symptoms was associated with weight gain, reduced physical activity, socioeconomic factors and to a lesser extent to regional factors
- These findings underline the necessity of planning public health policies towards preventing childhood obesity and enhance physical activity in pediatric populations

DOI: 10.3252/pso.eu.54espe.2015

