

Hospital Sofia

NKX2-1 p.Asp266Argfs142X de novo mutation in a girl with congenital hypothyroidism (CH): phenotypic description

Charite Virchow Klinikum, Humboldt University Berlin

Iva Stoeva¹, Anne Thorwarth², Boris Stoilov¹, Heiko Krude²

Screening and Functional Endocrine Diagnostics, University Pediatric Hospital Sofia, Medical University Sofia Research Laboratory, Institute Experimental Pediatric Endocrinology, Charite, Berlin

Background: Ttf1-/-mice had complete absence of follicular and parafollicular cells, agenesis of lung parenchyma, ventral forebrain, pituitary¹. CH patients with chromosomal deletions encompassing the TTF-1 locus² and point mutations in the TTF-1 gene^{3,4} confirmed its implication in the phenotype: CH with a thyroid gland in place, associated with respiratory distress syndrome, neonatal hypotonia followed by choreoathetosis or ataxia.

Objective: Description of the phenotype in a patient with NKX2-1 mutation from the Bulgarian thyroid screening cohort.

Methods: Case report and direct sequencing of NKX2-1.

<u>Perinatal history</u>: A girl, born from first pathologic pregnancy (toxicosis), 23 days after term, traumatic delivery with rupture of m. sternocleidomastoideus. Birthweight- 2500 (3rd percentile), birthlenght- 50 cm (50th percentile).

Family history: Unremarkable. Target height - 153 cm, SDS-MPH (Prader) - (-2.23).

Diagnosis: Congenital hypothyroidism was detected by the neonatal TSH screening (Table 1). Initial L-T4 dosage: 12 mcg/kg/d at day 53. At 2.5 years of age reevaluation was carried out and permanent hypothyroidism was established, due to thyroid dysgenesis – hypoplasia of the left lob, aplasia of the right lob (Fig. 1).

Age (d)	NTSH mU/1	TSH mU/1	T4 nmol/1
3	31.4		
35	77.3		
53	97.8	145	77.9
2.5 yrs	76.3	137	57

D 7-8MM 5-8MM =/ R4 R-Oce

Table 1- Thyroid function

Fig. 1 US of the thyroid

Growth and development: Despite normal TSH and (f)T4 under substitution she developed persistent hypotonia from early infancy. Developmental delay - walking at 3 years, talking –after 2 years, IQ at 5 years - 50, 6 years of age – 66. Catch down (Fig. 2) of linear growth (SDS_h -3.6 at 2 yrs), mild bone age retardation during adrenarche. Until the age of 6 she had frequent respiratory infections (asthma, CF, chronic pneumonias were excluded). After start of walking, movement affection resembles choreoathetosis.

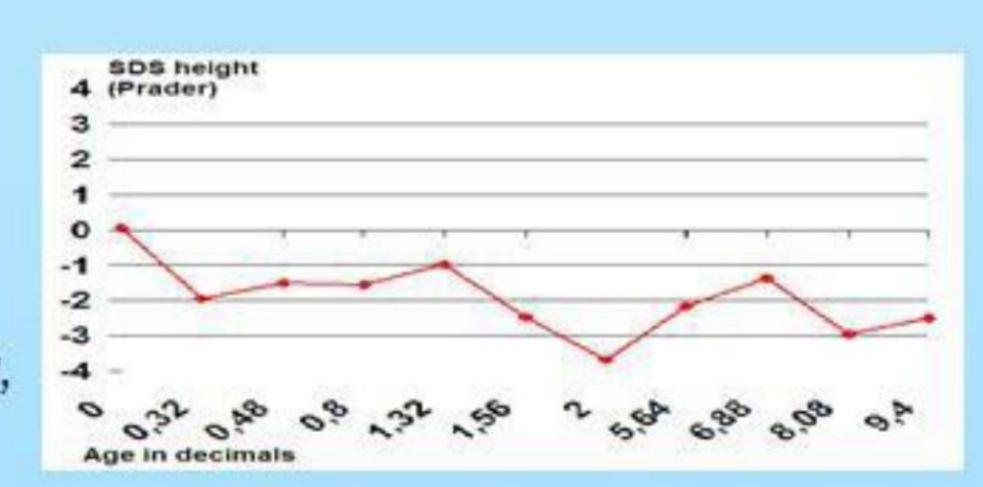


Fig. 2 SDS_h from birth to 10 years

Molecular analysis: According to the triad of thyroid, neurological and respiratory involvement the family was sequenced for NKX2-1 after informed consent. A small deletion c.796delGA leading at protein level to Asp266ArgfsX142 in the NK2-specific domain in exon 3 was found only in the patient (Fig. 3).

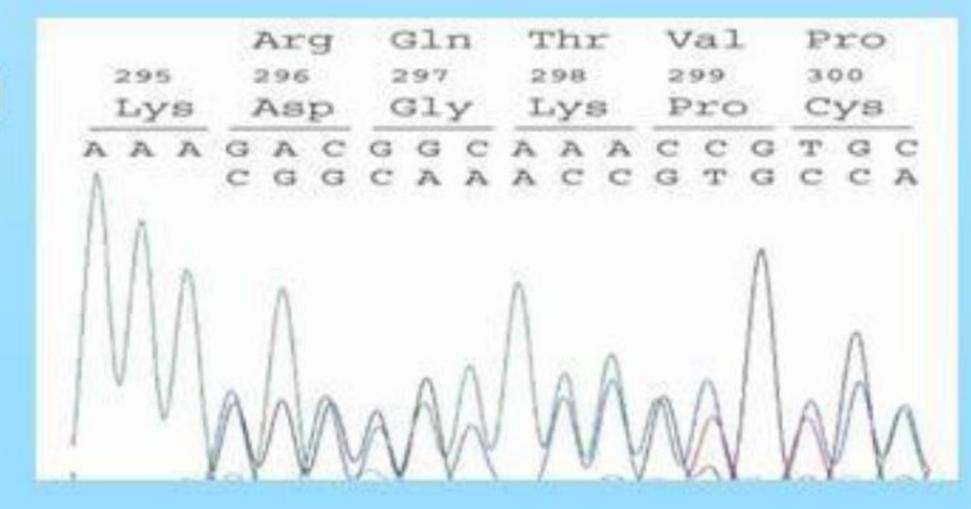
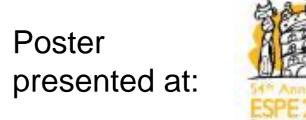



Fig. 3 c.796delGA

Conclusion: Monogenic CH is heterogeneous and belongs to rare diseases. Hypotonia despite sufficient L-T4 treatment is an early sign which can guide to the suspicion of underlying NKX2-1 mutations in primary CH.

REFERENCES 1. Kimura S., Hara Y., Pineau T. et al. Thyroid specific enhancer-binding protein is essential for the oganogenesis of the thyroid, lung, ventral forebrain, and pituitary. The T/ebp null mouse, Genes Dev. 1996, 10, 60–69. 2. Devriendt K, Vanhole C, Matthijs G, de Zegher F Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998, 338,18, 1317-8 3. Pohlenz, J., Dumitrescu, A., Zundel, D., et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J. Clin. Invest. 2002, 109, 469-473 4. Krude H., Schutz B., Biebermann H. et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J. Clin. Invest. 2002, 109, 475-480.

