

RESPONSE TO VITAMIN D REPLACEMENT IS DETERMINED BY BODY SURFACE AREA IN CHILDREN WITH VITAMIN D DEFICIENCY

In Hyuk Chung¹, Yu Sun Kang², Eun-Gyong Yoo² Department of Pediatrics, National Health Corporation, Ilsan Hospital, Goyang, Korea¹ Department of Pediatrics, CHA University, Sungnam, Korea²

Back ground and Objectives

- Back ground: The serum 25-hydroxyvitamin D (25OHD) levels are known to be lower in obese children, probably due to sequestration of vitamin D in the adipose tissue. However, there is no consensus on the dose adjustment for vitamin D supplementation in obese children with vitamin D deficiency (VDD).
- Objectives: To compare the response to vitamin D replacement in normal weight vs. overweight children with VDD, and to investigate the determinant for increment of 25OHD level (Δ25OHD) after vitamin D replacement.

Methods

- Participants were 65 Korean children between 8 to 15 years of age diagnosed with VDD between Dec 2013 and Feb 2014.
- VDD was defined as serum 25OHD <20 ng/mL and vitamin D sufficiency as 250HD ≥30 ng/mL.
- Overweight was defined as body mass index (BMI) ≥85th percentile (n=20), and normal weight as BMI 5th to 84th percentile (n=45).
- All participants received vitamin D₃ supplementation (2000 IU/d) for 8 weeks. The levels of 250HD and biochemical parameters were measured before and after treatment. Body fat was measured by bioelectrical impedance analysis.

Results

- The Δ25OHD was higher in normal weight group than in overweight group (20.6±7.2 vs. 15.0±7.6 ng/mL, P=0.006, Fig.2).
- Calcium creatinine ratio was lower than 0.2 in all participants before and after vitamin D replacement.
- Body surface area (BSA) was the determinant of Δ25OHD (β=-0.644, P=0.034) in a regression model including BSA, age, gender, body fat, and being overweight (R²=0.219, Table 3).

Table 1. Chlinical Charactoristics of study population

	Before Treatment			After Treatment		
	Normal weight	Overweight	р	Normal weight	Overweight	р
Age(month)	118.8 ± 16.9	120 ± 25.3	0.85			
Height(cm)	136.6 ± 9.2	144.8 ± 13.3	0.02	138.0 ± 9.6	146.3 ± 12.8	0.01
Weight(Kg)	33.9 ± 8.0	50.1 ± 16.3	<0.01	34.2 ± 7.7	49.0 ± 14.1	<0.01
WC(cm)	62.6 ± 8.3	76.9 ± 11.0	<0.01	62.1 ± 7.6	74.9 ± 8.3	<0.01
WHtR	0.4 ± 0.2	0.51 ± 0.1	0.01	0.4 ± 0.8	0.5 ± 0.1	0.09
BMI (kg/m²)	17.8 ± 2.1	23.3 ± 3.6	<0.01	17.8 ± 2.3	22.4 ± 3.0	<0.01
BMI-z	0.002 ± 0.8	1.7 ± 0.5	<0.01	-0.07 ± 0.9	1.4 ± 0.5	<0.01
SBP (mmHg)	101.2 ± 7.3	106.6 ± 10.5	0.08	102.2 ± 9.2	110.8 ± 11.9	0.01
DBP (mmHa)	58 6 + 7 9	61 1 + 8 2	0.33	56 6 + 7 8	60 3 + 8 6	0 10

WC, waist circumference; WHtR, waist to height ratio; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure

Table 2. Laboratory results of Before and After Vitamin D replacement

	Before Treatment			After Treatment		
	Normal weight	Overweight	р	Normal weight	Overweight	р
25OHD (ng/mL)	13.2 ± 3.2	14.2 ± 2.1	0.12	33.7 ± 7.4	28.6 ± 7.1	0.01
PTH (pg/mL)	32.3 ± 9.5	39.5 ± 18.0	0.11	30.4 ± 12.6	34.4 ± 14.8	0.30
Calcium (mg/dL)	9.1 ± 0.5	9.5 ± 0.3	0.01	9.4 ± 0.3	9.5 ± 0.4	0.53
Ion Calcium (mmol/L)	1.3 ± 0.1	1.2 ± 0.2	0.38	1.4 ± 1.5	1.2 ± 0.1	0.34
Phosphorus (mg/dL)	4.9 ± 0.6	5.1 ± 0.5	0.28	4.9 ± 0.4	4.9 ± 0.4	0.88
ALP (IU/L)	303.8 ± 86.0	320.0 ± 116.8	0.58	306.8 ± 76.4	292.0 ± 106.2	0.57
CCR	0.06 ± 0.1	0.07 ± 0.1	0.67	0.08 ± 0.1	0.06 ± 0.1	0.15
T. Chol (mg/dL)	167.1 ± 24.2	167.1 ± 29.1	1.00	162.4 ± 21.0	158.1 ± 21.1	0.44
Body fat (%)	22.2 ± 6.4	32.4 ± 6.2	<0.01	21.2 ± 6.9	30.4 ± 1.2	<0.01

25OHD, 25-hydroxyvitamin D; PTH, parathyroid hormone; ALP, alkaline phosphatase; CCR, calcium-creatinine ratio; T.Chol, total cholesterol

Fig. 1. The vitamin D status of each group after vitamin D replacement.

Fig.2. Δ25OHD in vitamin D replacement in normal and overweight groups.

Table 3. Factors associated with Δ25OHD in regression analysis

rable of ractors accordated with ==== in regression analysis				
	β	Р		
BSA	-0.64	0.03		
Age	0.38	0.14		
Gender	0.14	0.26		
Body fat (%)	0.01	0.95		
Being obese	0.02	0.07		

25OHD, 25-hydroxyvitamin D; BSA, body surface area

Conclusions

- The response to vitamin D replacement seems to be influenced by the size of the body rather than adiposity.
- achieve vitamin D sufficiency, dose adjustment for vitamin D supplementation is required according to the patient's BSA.
- This study was supported by FND net Co. Ltd.

References

- 1. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690-693
- 2. Mark S, Lambert M, Delvin E, et al. Higher vitamin D intake is needed to achieve serum 25(OH)D levels greater than 50 nmol/l in Que´bec youth at high risk of obesity. Eur J Clin Nutr. [serial online]. 2011;65(4):486-492
- 3. In Hyuk Chung, Hae Jung Kim, Sochung Chung, Eun-Gyong Yoo. Vitamin D deficiency in Korean children: prevalence, risk factors, and the relationship with parathyroid hormone levels. Ann Pediatr Endocrinol Metab 2014;19:86-91

