Screening of mutations in idiopathic hypogonadotrophic hypogonadism using a targeted next-generation sequencing approach

Maria Naumova¹, Anna Kolodkina¹, Natalia Kalinchenko¹, Olga Fidelina¹, Evgeny Vasilyev¹, Vasily Petrov¹, Oleg Malievsy², Nadezhda Raygorodskaya³, Anatoly Tiulpakov¹

¹ Endocrinology Research Centre, Moscow; ² Bashkir State Medical University, Ufa; ³ Saratov State Medical University named after V. I. Razumovsky, Saratov, Russian Federation

Background
To date at least 30 genes are known to be associated with idiopathic hypogonadotrophic hypogonadism (IHH). Analysis of all these gene candidates by Sanger sequencing would be expensive, labor-intensive and time-consuming. Recent introduction of next-generation sequencing (NGS) enables simultaneous analysis of multiple gene targets making it an attractive approach in such conditions as IHH.

Objective
To study the spectrum of molecular defects in IHH using a targeted NGS approach.

Subjects and Methods
25 patients with IHH (males, n=23; females, n=2) were studied. 5 subjects showed features of Kallmann syndrome (KS), 20 were normosmic. ‘Hypogonadotrophic hypogonadism panel’ genes were sequenced using a custom Ion Ampliseq gene panel and PGM semiconductor sequencer (Ion Torrent). Bioinformatic analysis was performed using Torrent Suite (Ion Torrent) and ANNOVAR* (annovar.openbioinformatics.org) software packages. Non-synonymous sequence variants were rated as “probably pathogenic” if they had allele frequency less than 1% and pathogenic IJB database scores.

Results
21 heterozygous pathogenic or probably pathogenic mutations were found in 13 of 25 patients (52%). Mutations were identified in 4 of 5 KS cases, and in 9 of 20 subjects with normosmic IHH. 9 of 21 mutations were novel. In 2 patients mutations were found in more than 2 genes.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Affected genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>№1 (with KS)</td>
<td>HS6ST1, WDR11, POLR3A</td>
</tr>
<tr>
<td>№2 (with nIHH)</td>
<td>KAL1, HS6ST1, POLR3B</td>
</tr>
</tbody>
</table>

Distribution of mutations

Conclusion
The results confirm predominance of mutations associated with defects of development and migration of GnRH neurons. The targeted NGS method can be successfully used for differential diagnosis of IHH.

Funding:
Alfa-Endo Program of Charities Aid Foundation (CAF) Russia

References: