Intelligence and behaviour in children and adolescents with Hashimoto’s thyroiditis

Claudia Boettcher1, Burkhard Brosig2, Henriette Windhaus3, Stefan A. Wudy1 and Andreas Hahn3

1Division of Paediatric Endocrinology & Diabetology, Centre of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
2Psychoanalytic Family Therapy, Centre of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
3Department of Child Neurology, Centre of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany

DISCLOSURE STATEMENT
The authors have nothing to disclose

BACKGROUND
Hashimoto’s Thyroiditis (HT) is an auto-immune-mediated disorder, and is the most common cause of thyroid disease and acquired hypothyroidism in children and adolescents. In adults with HT, concentration problems, memory disorders and an increased rate of depression have been reported.

OBJECTIVE AND HYPOTHESES
We aimed to investigate whether
✓ children and adolescents with HT have more behaviour and emotional problems
✓ and/or lower intelligence
than healthy subjects.

METHODS
Children/ adolescents with HT recruited via our paediatric-endocrine clinics and age-matched healthy controls underwent psychometric testing. Table 1 gives details about the constructs and applied tests.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td>Cultural-Fair-Intelligence-Test (CFT-20-R)</td>
</tr>
<tr>
<td>Physical complaints</td>
<td>Gössner complaint questionnaire (GGBK)</td>
</tr>
<tr>
<td>Alexithymia</td>
<td>Toronto-Alexithymia Scale (TAS 26)</td>
</tr>
<tr>
<td>Behavioural problems</td>
<td>Child Behaviour-Checklist (CBCL)</td>
</tr>
</tbody>
</table>

Table 1. Constructs and applied tests

Student’s t-test was used to compare the findings. In addition we determined serum antibodies against thyroper-oxidase (TPO) and thyroglobulin (TG) in both groups, and TSH and FT4 in HT patients.

RESULTS
Table 2 gives an overview of the study population. Age, gender, and parental education differed not between both groups. Figure 1a, b shows the HT patients’ TSH- and FT4-values, figure 1c TPO- and TG antibody-values. No thyroid antibodies were found in the control probands. Despite a marginally lower mean IQ in the HT group, no significant difference compared to the control group could be detected. Figure 2 shows the IQ-distribution in both groups. Neither the GGBK nor TAS 26 revealed significant differences between patients and controls. Behavioural problems, however, detected by CBCL (“Competence-Scales” covering “social competence”, “activity” and “school” as well as “Syndrome-Scales” covering emotional problems and bodily complaints) were significantly more common in HT patients than in controls (p<0.05, respectively) (Figure 3). Co-morbidities, especially Diabetes mellitus type I seemed not to influence the result.

SUMMARY
✓Children/adolescents with HT show more behavioural problems but not more intellectual problems than healthy subjects of the same age.
✓Further investigations should clarify whether the socio-emotional problems are specifically related to HT, or are due to affection by a chronic disease per se.