Next-generation Sequencing (NGS) as a Rapid Molecular Diagnosis in Patients with 46,XY Disorder of Sex Development (DSD)

Samim Özen1, Hüseyin Onay2, Tahir Atik3, Aslı Ece Solmaz2, Damla Göksen1, Ferda Ozkinay2,3, Şükran Darcan1

Ege University School of Medicine 1: Department of Pediatric Endocrinology 2: Department of Medical Genetics 3: Department of Pediatric Genetics, İzmir, Turkey

Conflict of interest: None

Introduction:

- 46,XY DSD occurs as a result of testicular developmental disorders, defect in androgen synthesis or action.
- It is of critical importance to make a fast and accurate diagnosis in terms of sex determination and management of patients.
- The diagnosis of DSD is quite costly and it takes a considerable amount of time due to lengthy hormonal and genetic analysis.

Aim: The use of targeted Next-generation sequencing of all known genes associated with 46 XY DSD for a fast molecular genetic diagnosis in patients in whom underlying defect of DSD was not previously diagnosed.

Materials and Methods:

- 20 pediatric patients with 46,XY DSD were recruited which suspected testicular developmental disorders and defect in androgen synthesis.
- Androgen receptor (AR) and 5-alpha reductase (SRD5A2) gene mutations were excluded by Sanger sequencing.
- The forty six genes that have been shown to be related to 46,XY DSD were sequenced by Illumina MiSeq Next Generation Sequencing System and the Illumina TruSight "Exome Kit.

Results:

- The parents of 14 (66.7%) cases were consanguineous.
- Nine (45%) mutations in 4 different genes were identified in 20 patients (Figure 1)
- Six mutations found in unrelated individuals were novel.
- Mutations in the HSD17B3 gene were observed in 6 patients (30%).
- Table 1 shows clinical and molecular characteristics of patients.

![Figure 1. Nine (45%) mutations were found in 20 patients with DSD by NGS](image)

Table 1: Clinical and molecular characteristics of the identified variants in the study

<table>
<thead>
<tr>
<th>Patient/age (years)</th>
<th>Assigned sex</th>
<th>Gene</th>
<th>Transcript ID</th>
<th>cDNA</th>
<th>Protein</th>
<th>Mutation Type</th>
<th>MT</th>
<th>Polyphen2 score</th>
<th>SIFT</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/0.6</td>
<td>M</td>
<td>SRY</td>
<td>NM_003140.2</td>
<td>c.535C>T/c.535C>T</td>
<td>p.R178X/p.R178X</td>
<td>NS/NS</td>
<td>DC</td>
<td>NA</td>
<td>NA</td>
<td>Novel</td>
</tr>
<tr>
<td>6/7</td>
<td>M</td>
<td>WT1</td>
<td>NM_024426.4</td>
<td>c.1187C>T/wt</td>
<td>p.P396R/wt</td>
<td>M</td>
<td>DC</td>
<td>PD</td>
<td>D</td>
<td>Novel</td>
</tr>
<tr>
<td>8/18</td>
<td>F</td>
<td>HSD17B3</td>
<td>NM_000197.1</td>
<td>c.524G>C/c.524G>C</td>
<td>p.R175T/p.R175T</td>
<td>M/M</td>
<td>DC</td>
<td>PD</td>
<td>D</td>
<td>Novel</td>
</tr>
<tr>
<td>9/7</td>
<td>F</td>
<td>HSD17B3</td>
<td>NM_000197.1</td>
<td>c.239G>A/c.239G>A</td>
<td>p.R80Q/p.R80Q</td>
<td>M/M</td>
<td>DC</td>
<td>PD</td>
<td>D</td>
<td>Known</td>
</tr>
</tbody>
</table>

M: Missense, NS: Nonsense, MT: MutationTaster, DC: Disease causing, PD: Probably Damaging, D: Damaging, T: Tolerated, NA: Not available, wt: Wild Type

Conclusions:

- Targeted next-generation sequencing is an efficient, rapid and cost-effective technique for the mutation detection in genetically heterogeneous diseases such as 46,XYDSD.
- HSD17B3 gene mutations may be one of the most common causes of 46,XY DSD in societies having high rate of consanguineous marriages.
- To identify the genetic etiology of 46, XY DSD in individuals without any mutation, whole exome sequencing would be useful.