Syndromic hypoketotic, hypoinsulinaemic hypoglycaemia due to a mosaic activating phosphatidylinositol 3-kinase (PI3K) mutation

Sebastian Kummer1, Sarah Leiter2, Alena Weilers1, Inès Barroso3, Thomas Meissner1, Robert Semple2. SK and SL contributed equally

1Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Hospital Düsseldorf, Germany; 2Institute of Metabolic Science, University of Cambridge, Cambridge, UK; 3Human Genetics, Wellcome Trust Sanger Institute, Cambridge, UK.

Introduction

In contrast to hypoglycaemia due to congenital hyperinsulinism, there are patients with a similar metabolic profile of hypoketotic hypoglycaemia, but low insulin levels and relatively low glucose requirements to maintain euglycaemia. So far, four patients with activating mutations in the insulin signal-transducing kinase AKT2 have been described, each also showing a syndromic phenotype including hemihypertrophy (1). We present a 3.5 year-old girl with similar metabolic and syndromic features, but no AKT2 mutation, suggesting a possible mutation in another gene of the same pathway.

Case report

• Non-consanguineous German parents, birth weight 3230g (+2.03 SDS), length 52cm (+1.51 SDS), HC 37.5cm (+2.33DS)
• Recurrent hypoketotic, hypoinsulinaemic hypoglycaemia, unresponsive to diazoxide and somatostatin analogues, currently stable under starch-enriched meals and overnight PEG feeds.
• Other syndromic aspects: Large diastasis recti, syndactyly, short limbs and “chubby” appearance, ventriculo-peritoneal shunt due to Arnold-Chiari Malformation, epilepsy, generalised muscle hypotonia, hyperaemia of the face, dorsal haemangiomata, fibrocystic hepatitis on liver biopsy

Genetics

Exome sequencing undertaken in the proband and parents detected a mosaic mutation (p.Glu726Lys) in PIK3CA, encoding the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), in lymphocyte, hair bulb, fibroblast, cheek swab, and liver DNA from the patient but neither parent:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mutation burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td><1%</td>
</tr>
<tr>
<td>Father</td>
<td><1%</td>
</tr>
<tr>
<td>Fibroblasts</td>
<td>33-36%</td>
</tr>
<tr>
<td>Liver</td>
<td>42-44%</td>
</tr>
<tr>
<td>Blood</td>
<td>22-20%</td>
</tr>
<tr>
<td>Cheek swab right</td>
<td>20-23%</td>
</tr>
<tr>
<td>Cheek swab left</td>
<td>24-26%</td>
</tr>
<tr>
<td>Hair bulb</td>
<td>27-28%</td>
</tr>
</tbody>
</table>

Cellular Studies

Primary dermal fibroblasts of the patient (P3) show a small but significant increase in phosphorylation of downstream AKT at Thr 308/399 and Ser 473/474, lying downstream of PI3K. This hyperphosphorylation level lies in between those observed in AKT2 mutation (1) and PIK3CA p.His1047Leu-associated segmental overgrowth (2).

Discussion

Activating PIK3CA mutations are known to cause a spectrum of segmental overgrowth disorders including Megalencephaly-Capillary malformation (MCAP) syndrome (3), of which our patient shows several typical aspects. The phenotypic spectrum is substantially influenced by the mosaic pattern, e.g. the mutation burden in a respective tissue. So far, hypoglycaemia has not been described in MCAP syndrome.

Conclusions

In contrast to hypoglycaemia due to congenital hyperinsulinism, there are patients with a similar metabolic profile of hypoketotic hypoglycaemia, but low insulin levels and relatively low glucose requirements to maintain euglycaemia based on mutations in the PI3K/AKT signalling pathway. These patients provide a unique opportunity to study this pathway in vivo.

Acknowledgements and literature

We thank the participating patient and her family. This work has been supported by grants from Novartis Trust, Wellcome Trust, Medical Research Council and National Institute of Health Research.

References:

Correspondence: Dr. med. Sebastian Kummer, Department of General Pediatrics, Neonatology and Pediatric Cardiology. University Children’s Hospital, Moorenstr. 5, 40225 Düsseldorf, Germany. E-Mail: sebastian.kummer@med.uni-duesseldorf.de. No conflict of interest.