The lack of MKRN3 gene mutations in patients with idiopathic sporadic GnRH-dependent precocious puberty

Beata Wikiera1, Karolina Pesz2, Elżbieta Petriczko3, Julita Nocoń-Bohusz1, Aleksander Basiak1, Ewa Urbanowicz2, Mieczysław Waleczak3, Maria Sąsiadek2, Anna Noczyńska1

1 Department of Endocrinology and Diabetology for Children and Adolescents, Wroclaw Medical University, Wroclaw, Poland
2 Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
3 Department of Paediatrics, Endocrinology, Diabetology and Metabolic Diseases of the Developmental Age, Pomeranian Medical University, Szczecin, Poland

email: wikierab@wp.pl

Introduction

Central precocious puberty (CPP) results from activation of the hypothalamic-pituitary-gonadal axis before the age of 8 years in girls and 9 years in boys. The molecular basis of the maturation of this axis is still poorly understood. The MKRN3 gene located in the Prader-Willi syndrome critical region (chromosome 15q11-q13), inhibits factors stimulating pulsatile GnRH secretion. In 2013, inactivating mutations in the MKRN3 gene were discovered to cause some of the cases of familial precocious puberty. Subsequently, there have been few reports of apparently de novo mutations causing sporadic central precocious puberty.

Study group

Blood samples were collected from 25 unrelated patients (24 girls and 1 boy), from two university medical centers. All patients were clinically diagnosed with precocious puberty of central origin. Clinical signs:
- Girls: enlargements of mammal glands, estrogenisation of external genitalia
- Boys: enlargements of testicles
- Both: acceleration of height velocity, acceleration of bone maturation, pubertal result of GnRHa testing

The objective

The objective of the study was to investigate mutations in MKRN3 gene in patients with apparently sporadic idiopathic CPP.

Measurements

DNA was isolated from lymphocytes using standard procedures. The whole coding region of the MKRN3 gene was divided between five sets of primers. Each fragment was amplified with PCR, routinely cleaned and then sequenced with the classical Sanger’s method.

Results

No pathogenic variants of the MKRN3 gene were found among the studied group.

Conclusion

Although deficiency of MKRN3 causes central precocious puberty in humans, mutations in MKRN3 gene are a very rare genetic cause of isolated central precocious puberty.