Clinical course in a girl with hTPO mutation R161I in exon 5: 18 years of follow up

Iva Stoeva1, Boris Stoilov1, Petra Ambrugger2, Heike Biebemann2, Ganka Dineva1, Annette Graeters2

1 Screening and Functional Endocrine Diagnostics, University pediatric Hospital, Medical University Sofia
2 Institute of Experimental Pediatric Endocrinology, Charite´ Virchow Klinikum, Humboldt University Berlin

Background

Out of the several genetic defects responsible for thyroid dysmorphogenesis, mutations in TPO gene are the most common causes of inherited defects in congenital hypothyroidism (CH). To date, more than 60 mutations that affect the TPO activity to varying extents have been described. Prevalent mutations are in exons 8-11 (catalytic site, Fig. 1)1,2,3.

Clinical case R.M.Y, born on 28.11.1996

A newborn girl of Bulgarian origin, first uneventful pregnancy on term, S.C., Apgar 9, BW 3400 g, BL 52 cm, no thyroid diseases in the family. Congenital hypothyroidism was detected by the TSH screening (Tables 1, 2).

<table>
<thead>
<tr>
<th>Age</th>
<th>NTSH (mU/l)</th>
<th>TSH (mU/l)</th>
<th>T4 (nmol/l)</th>
<th>Tg (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d</td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14d</td>
<td>681</td>
<td>1120</td>
<td><25</td>
<td>547</td>
</tr>
<tr>
<td>2y3m</td>
<td>300</td>
<td>463</td>
<td><25</td>
<td>211.6</td>
</tr>
</tbody>
</table>

Table 1 - Screening, confirmation and reevaluation

Follow-up

Euthyroid state achieved at day 27, good parental adherence with the therapy during entire follow-up (frequent thyroid ultrasound, TSH, FT4, auxology, bone age). Normal physical growth and development according to the genetic potential (Fig. 2). Mental development: normal, high academic achievements. Twice (at 9 and 12 years) a significant thyroid enlargement along with TSH elevation (12-20 mU/l) and low-normal FT4 (9.6-12.4 pmol/l) was evident (Table 3). Bone age variations – 1 year ahead of the chronological during puberty.

Molecular genetic analysis

Candidate for hTPO molecular genetic studies based on permanent severe CH, orthotopic thyroid and high thyroglobulin levels. An uncommon homozygous mutation in exon 5, R161I was determined by dHPLC and sequencing after reevaluation (Fig. 3).

Conclusions

An earlier molecular genetic analysis would have prevented the reevaluation; in order to prevent thyroid enlargement a more frequent TSH monitoring is indicated, especially in puberty. The increased risk for thyroid cancer should be kept in mind.

References

Fig. 1- Most common TPO gene mutations

Fig. 2- Growth curve

Fig. 3- Substitution of AG-AT at nucleotide position 572 (R161I)