Are short children with low GH secretion metabolically different from children of normal height?

Anders Tidblad¹(M.D., PhD-student), Klas Ekström¹(M.D., PhD), Martin Ritzén¹(M.D., PhD), and Claude Marcus² (M.D., PhD)

Background
Severe Growth Hormone Deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition with increased abdominal fat and reduced lean body mass to biochemical disturbances such as high insulin sensitivity and hyperlipidemia. However, less is known regarding these parameters in children with a milder deficiency in Growth Hormone (GH) secretion.

Objective
To analyse if short children with a relatively low GH secretion differ metabolically from healthy children of normal height.

Method
We examined insulin sensitivity index (SI), body composition and fasting levels of glucose, insulin and HbA1c in short children (<-2.5 SDS) between 7-10 years of age (n=35, 22 M/13 F) with GH-peak 7-14 μg/L in Arginine-Inulin Tolerance Test (AITT) and compared the results with an age- and sex-matched control group of normal height (n=12, 8 M/4 F). Si was measured through frequently sampled intravenous glucose tolerance test (FSIVGTT) calculated with MINMOD software (developed by R Bergman) and body composition with DEXA (GE Lunar Prodigy). We also performed a subgroup analysis comparing these parameters for short children above and below a peak GH secretion level of 10 μg/L during AITT.

Results
The group of short children had a higher mean SI compared to the control group (12.9 ± 10.4 μU/mL x min/mL, fig.1) but the difference was non-significant unadjusted (p=0.079) and only borderline significant when adjusted for sex (p=0.059).

The comparison of body composition showed that the short children had a lower percentage of abdominal fat (AF, 13.3% vs 16.6%, fig. 2) and higher percentage of lean body mass (LBM, 80.6% vs 77.5%, fig. 3) compared to the controls. These differences were significant when adjusted for sex (p=0.05 and p=0.04 respectively). No significant difference of fasting glucose or HbA1c was detected between the groups but fasting insulin was significantly lower in the short children (22.4 vs 32.0 pmol/L, fig. 4) when adjusted for sex (p=0.05).

Conclusion
Short children with mildly impaired GH secretion are very heterogeneous in terms of their metabolic profile compared with healthy children of normal height.

They show higher SI and lower fasting insulin levels than the healthy children of normal height but in contrast to the phenotype of GHD the short children have lower AF and higher LBM, which might have contributed to the differences in insulin sensitivity.

Further analysis
We are currently analysing microdialysis data as well as data from investigations with isotope marked glucose and glycerol to further understand the metabolic differences between the groups.

In the second part of the study the short patients were randomized for GH treatment in 3 different doses (low, normal and high) with an extensive follow-up for 2 years of which the data soon will be presented.