SEVERE ISOLATED GROWTH HORMONE DEFICIENCY AND MYOPATHY IN TWO BROTHERS WITH RNPC3 MUTATION

Zoran Gucev¹, Momir Polenakovic², Velibor Tasic¹, Yves LeBouc³, Serge Amselem³, Jurgen Klammt⁴, Roland Pfaffle³, Aleksandra Filipovska⁵

¹Medical Faculty Skopje, Macedonia ²Macedonian Academy of Sciences and Arts, Skopje, Macedonia ³Hopital Trousseau 26 av A Netter, Paris- France ⁴University of Leipzig Medical School, Leipzig, Germany ⁵Perth Campus, Perth WA, Australia

OBJECTIVES

Isolated growth hormone (GH) deficiency (IGHD) can be caused by mutations in GH1 and other genes involved in pituitary development (as POUF1, PROP1, LHX3) and. The molecular basis of a large proportion of patients with familial IGHD remains unknown.

We present two brothers with very distinct phenotype, possibly constituting a novel clinical and genetic entity. The common phenotype included red hair, obesity, myopathy, severe IGHD and, growth without growth hormone.

METHODS

Exome sequencing, alignment, variant call, annotation and filtering.

The sequencing was done using the SeqCapRoche Human Exome V3 capture system (Roche NimbleGen, Madison, WI, USA) and the HiSeq2000 platform (Illumina, San Diego, CA, USA). The initial data processing included alignment to the hg19 reference genome by Novoalign (www.novocraft.com), PCR duplicate removal by Picard tool MarkDuplicates (http://picard.sourceforge.net/), and recalibration and variant calling in GATK (DePristo et al. 2011). Variants were annotated by ANNOVAR (Wang et al. 2010), version 23 Aug 2013.

The search for the disease-causing mutation focused on variants with a quality score ≥20 and coverage ≥4x, which were located outside of segmental duplications and simple repeats. The search was based on the assumption of rare deleterious variant(s) matching segregation criteria based on the respective hypothesis for AR, XL or de novo variant(s).

RESULTS

WES Results:

There was no single homozygous region shared by both siblings that was not also homozygous in any of the parents (other individuals from the group of 12).

Conclusion (WES):

No homozygous “deleterious” candidate variant identified. The variant could be outside the targeted regions or in an exome targeted region that is not covered/ poorly covered by the sequencing (or both alleles are deleted and therefore, not detected by the exome sequencing).

There was a single gene with compound heterozygous variants passing the segregation filter where each parent is heterozygous for one of the variants. RNPC3_NM_017619:exon13:c.1420C>A:p.P474T

CONCLUSIONS

Mutations of the RNPC3 gene encoding 65K protein that is a part of the U12-type spliceosome were identified. It is of note that the missense variant detected in our patient is exactly the same, while the non-sense variant is different from those already published. At present it is not clear how the mutations cause this particular phenotype. Additional functional studies and studies in knockout animals will follow.

REFERENCES