CONGENITAL HYPOTHYROIDISM IN TWIN COUPLES **AND TRIPLETS**

A.Olivieri¹, G.Weber², A.Cassio³, P.Costa⁴, F.Calaciura⁵, E.Medda¹, MC. Vigone³, T. De Filippis⁶, G.Gelmini⁶, F.Marelli⁶, V.Di Russo², L.Persani⁶.

¹Italian National Institute of Health, Rome; ²Vita-Salute University, IRCCS San Raffaele Hospital, Milan; ³University of Bologna, Bologna; ⁴University "La Sapienza", Rome; ⁵Garibaldi Hospital, Catania; ⁶IRCCS Istituto Auxologico Italiano and University of Milan, Italy.

Introduction Over the years special screening procedures for preterm and twin babies (re-screening at 2-4 weeks of life) have been adopted by many screening laboratories worldwide. However, no extensive studies have been performed to verify how many co-twins with negative test at first screening (3-5 days of life) become positive at re-screening, and the utility of a long-term follow-up also in co-twins with negative test at screening and re-screening

Objectives

- to estimate the concordance rate for CH within the first month of life in twin couples/triplets discordant for CH at the first screening;
- to verify whether a long-term follow-up of co-twins with negative test at screening and re-screening may be useful to verify the occurrence of thyroid hypofunction in these children during development;
- to characterize probands and co-twins by next generation sequencing (NGS) analysis of a panel of candidate genes (NKX2-1, FOXE1, PAX8, GLIS3, JAG1, TSHR, SLC26A4, DUOX2, DUOXA2, TPO, TG)

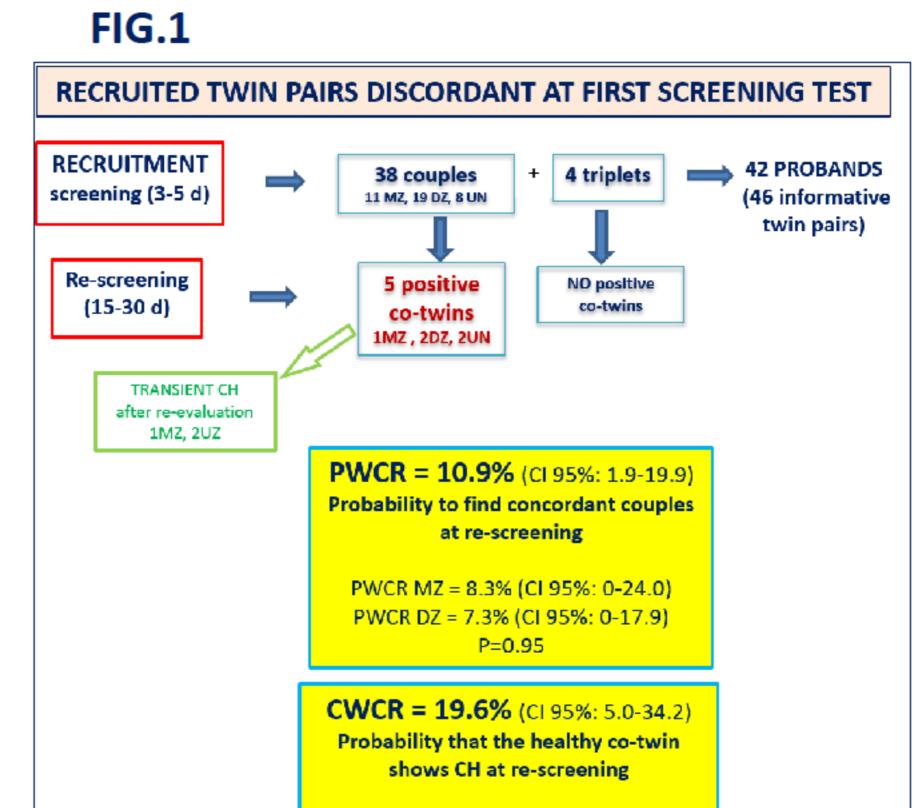
Methods Thirty-eight twin couples and 4 triplets discordant for CH at first screening (42 CH probands) were recruited for the study. The range of the long-term follow-up in the couples/triplets was 3-21 years (median 8.1 yr). Pairwise concordance rate (PWCR) was calculated as the proportion of concordant pairs over the sum of concordant and discordant pairs. Case wise concordance rate (CWCR) is the probability that one twin in a pair is affected, given that his/her co-twin is affected. Survival analysis using Kaplan-Meier method was performed to describe the occurrence of thyroid hypofunction in co-twins.

Results

Among the couples/triplets discordant at first screening 5 cotwins resulted positive at re-screening. PWCR and CWCR for CH confirmed at re-screening are reported in **FIG.1**

During the long-term follow-up a thyroid hypofunction was observed in 4 co-twins and a treatment with L-thyroxine was started at the age of 2 months for two co-twins, 9 months, 12 years. PWCR and CWCR for permanent thyroid hypofunction are reported in **FIG.2.** Details of concordant twin pairs are reported in TABLES 1-2. Kaplan-Meier survival curves concerning the long term follow-up are shown in FIG.3

The systematic NGS analysis revealed variations consistent with the observed phenotype in 50% of concordant twin couples. Most of the discordant MZ cases remain unexplained by NGS analyses (TABLES 3-4).


Table 3. Details of discordant MZ twins with permanent CH

Discocordant twin pairs	Sex	Zigosity	CH diagnosis	Perm/Trans	NGS analysis
Proband DL1 Co-twin DL1 (follow-up 18 yr)	F	MZ MZ	Agenesis Normal thyr	Perm CH Healthy	DUOX2:p.Q556X,COSM 4055126 DUOX2:p.Q556X,COSM 4055126
Proband DL2 Co-twin DL2 (follow-up 5 yr)	F	MZ MZ	Agenesis Normal thyr	Perm CH Healthy	WT WT
Proband DL3 Co-twin DL3 (follow-up 21 yr)	M	MZ MZ	Agenesis Normal thyr	Perm CH Healthy	WT WT
Proband DL4 Co-twin DL4 (follow-up 14 yr)	F F	MZ MZ	Hypopl thyr Normal thyr	Perm CH Healthy	WT WT
Proband DL5 Co-twin DL5 (follow-up 15 yr)	F F	MZ MZ	Ectopic thyr Normal thyr	Perm CH Healthy	WT WT
Proband DL6 Co-twin DL6 (follow-up 8 yr)	F	MZ MZ	Ectopic thyr Normal thyr	Perm CH Healthy	SLC26A4:p.T410M SLC26A4:p.T410M
Proband DL7 Co-twin DL7 (follow-up 11yr)	F F	MZ MZ standardized questionnaire	Ectopic thyr Normal thyr	Perm CH Healthy	NO DNA NO DNA

Table 4. Details of discordant DZ twins with permanent CH

Couples DLdz 16, 17, 18, 20 show normal thyroid and no DNA

CRWR MZ = 15.4% (CI 95%: 0-42.0)

CRWR DZ = 14.3% (CI 95%: 0-31.9)

P=0.95

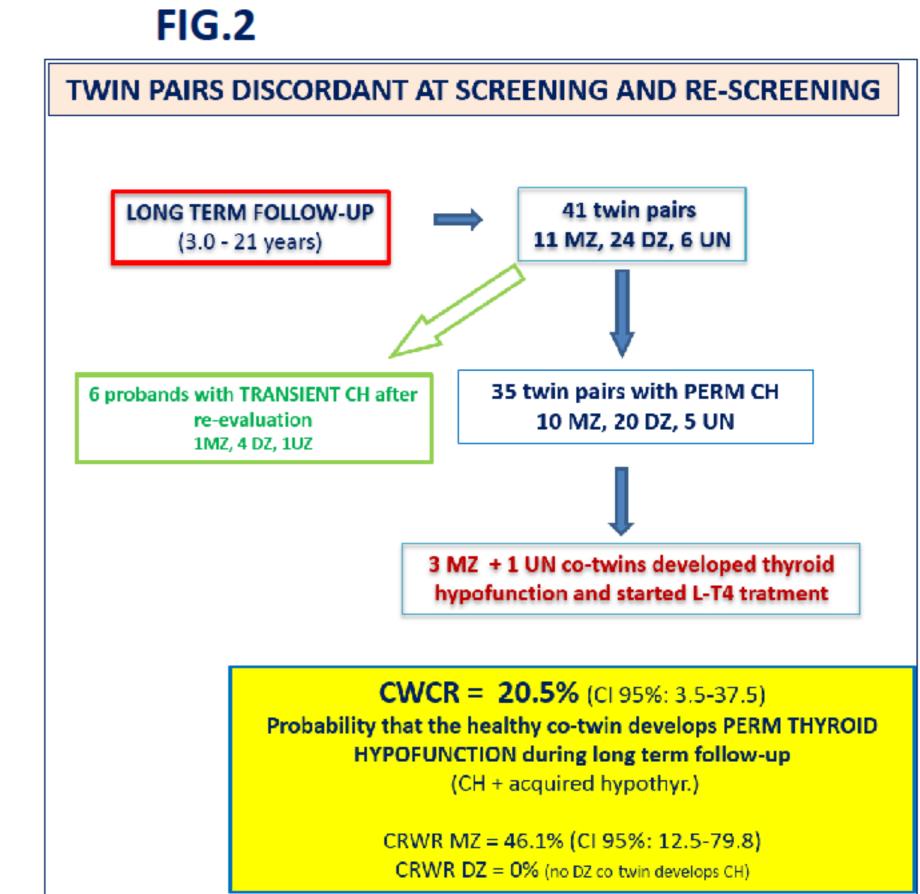
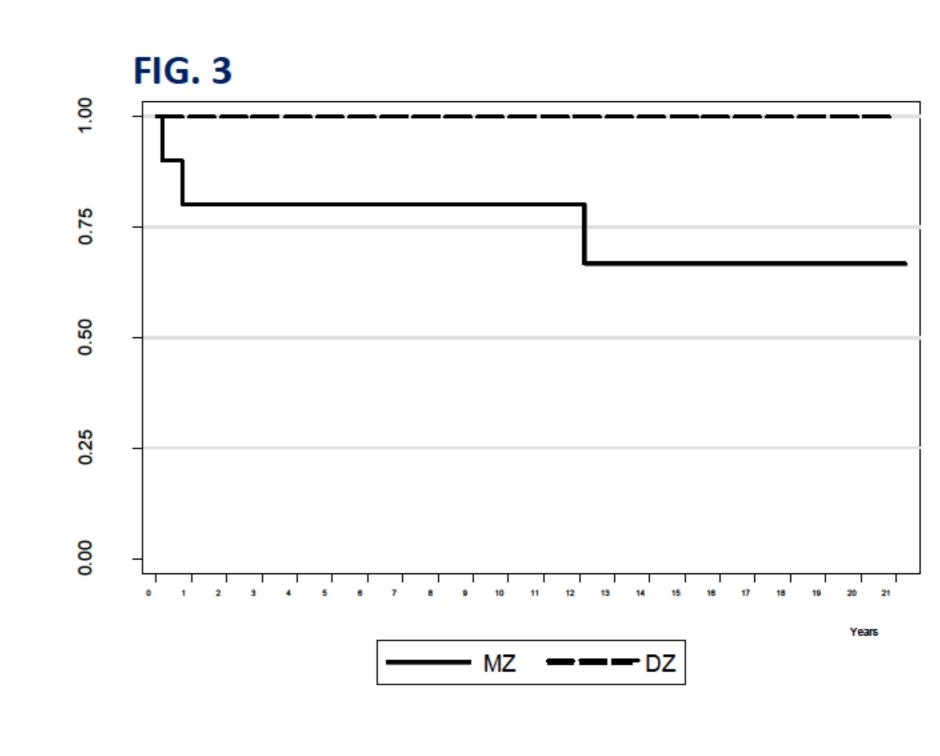



Table 1. Details of twin pairs concordant at re-screening

Concordant at re-screening	Follow- up yr	Sex	Zigosity	CH diagnosis	Perm/Tra ns	NGS analysis
Proband R1	3	F	DZ	Ectopic thyr	Perm CH	NO DNA
Co-twin R1		M	DZ	Normal thyr	Perm CH	NO DNA
Proband R2	6	F	DZ	Normal thyr	Perm CH	TPO:p.R584W; TG: p.D1312G
Co-twin R2		M	DZ	Normal thyr	Perm CH	TPO:p.R584W; TG: p.D1312G
Proband R3	3	F	MZ	Hypopl thyr	Trans CH	TG: IVS45-9bp T>G
Co-twin R3		F	MZ	Hypopl thyr	Trans CH	TG: IVS45-9bp T>G
Proband R4	9	M	UN	Normal thyr	Trans CH	NO DNA
Co-twin R4		M	UN	Normal thyr	Trans CH	NO DNA
Proband R5	4	M	UN	Normal thyr	Trans CH	NO DNA
Co-twin R5		M	UN	Normal thyr	Trans CH	NO DNA

Table 2. Details of twin pairs concordant during the long term follow-up

Concordant at long term follow-up	Sex	Zigosity	CH diagnosis	Time of diagnosis	Perm/Tra ns	NGS analysis
Proband F1 Co-twin F1 (follow-up 5 yr)	M M	MZ MZ	Hemiagenesis Hypopl thyr	2 mo	Perm CH Perm CH	WT WT
Proband F2 Co-twin F2 (follow-up 12 yr)	F F	MZ MZ	Normal thyr Normal thyr	9 m o	Perm CH Perm CH	DUOX2:p.V1078M; TG: p.S523 DUOX2:p.V1078M; TG: p.S523
Proband F3 Co-twin F3 (follow-up 21 yr)	F F	MZ MZ	Ectopic thyr Normal thyr	12 yr	Perm CH Perm CH	WT WT
Proband F4 Co-twin F4 (follow-up 4 yr)	M M	UN	Hypopl thyr Normal thyr	2 mo	Perm CH Perm CH	NO DNA NO DNA

Conclusions. These results show:

- the importance of the re-screening at 2-4 weeks of life in both MZ and DZ twins;
- the possible benefit of a long-term follow-up also in co-twins with negative test at screening and re-screening, especially if MZ;
- the need of further studies in order to uncover the largely unexplained pathogenesis of CH.

The authors declare no confict of interest

Thyroid

