A mutation in WT1 (Wilms’ Tumor Suppressor 1) Associated with 46, XX TDSD

C. Eozenou*, L. Fusée, I. Mazen, J. Bignon Topalovic, K. McElreavey & A. Bashamboo*
*Institut Pasteur, Paris, France; †National Research Center, Cairo, Egypt

The authors declare no conflict of interest

Scientific context

- **Human Sex Determination, WT1 and DSD**
 - In males, the SRY protein in synergy with NR5A1, upregulates SOX9 expression leading to Sertoli cell differentiation (1).
 - Ovary development is controlled by RSP01/WNT4/β-catenin and FOXL2 pathways (1).
 - Mammalian sex determination is regulated by two mutually antagonistic pathways (2).
 - DSD (Disorder/Differences of Sex Development) refers to congenital conditions with atypical development of chromosomal, gonadal, or anatomic sex (3).
 - 46,XX DSD includes an individual with ovotestis (ovotesticular DSD (OTDSD)) or testis (testicular DSD (TSDD)).
 - Most individuals with 46,XX DSD carry SRY, that results in development of testis (4).
 - Other causes include rearrangements involving SOX9 or SOX3 loci (5).
 - Syndromic forms of 46,XX DSD-OTDSD have been reported due to mutations of WNT4 and RSP01 (6).

Clinical features & sequencing

- **Patient: 46,XX TDSD Egyptian ancestry**
 - Normal plump
 - Mild microcephaly (~4.5 SD)
 - No nephroblastoma
 - Dysgenetic Testis
 - Perineum length 9 cm
 - Labiolabial fold, single opening
 - Small uterus (ablation), pubic bone size
 - Mildly prominent Suprapennals by pelvic US

What is the effect of the mutation R495G on the biological activity of WT1 protein and on sex determination pathways?

Results

- **OVER-ACTIVATION OF MALE PATHWAY ?**
 - WT1 (Wilms’ tumor suppressor 1) encodes a key developmental regulator with four C-terminal zinc fingers.
 - WT1 is essential for development of the kidneys, bipotential gonad and testis (7).
 - Two different isoforms of WT1 (+KTS and -KTS) have distinct functions during gonad development. The -KTS isoform binds the promoter of SRY and NR5A1 whilst +KTS binds RNA and increases the stability of SRY transcript (8).
 - WT1 gene deletions are associated with genitourinary anomalies and a predisposition to Wilms’ tumor, whereas heterozygous missense mutations give rise to Denys-Drash syndrome (7).

- **UNDER-ACTIVATION OF FEMALE PATHWAY ?**
 - R495G shows a significant quantitative reduction in the transactivation of FOXL2 promoter in transient transactivation assays.
 - Loss of protein-protein interaction between GATA4 and R495G whereas there is a strong interaction with WT1-wt.
 - R495G alters the GATA4/FOG2 mediated regulation of SOX9 via Testo enhancer element.

Conclusions & perspectives

The WT1p.R495G protein aberrantly regulated/interacted with genes/proteins known to be involved in both male and female gonadal development. R495G results in:

- Dysregulation of SOX9 expression via Testo enhancer
- Disruption of the protein-protein interaction between WT1 and GATA4
- Overexpression of male pathway in a granulosa cell line
- Under activation of FOXL2 promoter

First time that a mutation has been identified in WT1, associated with 46,XX TDSD. These data resemble our recent discovery of a recurrent NR5A1 mutation (R92W) associated with 46,XX OTDSD/TDSD (9).

- RNA-seq underway to fully understand the complete extent of transcriptome modulation by WT1p.R495G
- A mouse model carrying WT1p.R495G knock-in underneath to understand the mechanism of testis-formation in XX chromosomal context

(1) Salido and Loveless-Badge, 2009, Nature
(2) Ullrich et al., 2009, Cell and Watson et al., 2011, Nature
(3) Bashamboo and McElreavey, 2013, Sex Dev
(4) Barbara et al., 2011, Sem in Fetal Neonat Med
(5) Tsuda and Roberts, 2014, Biochem J
(6) Rosenberg et al., 2015, Eur J Hum Genet
(7) Larsson et al., 2012, Discov Med
(8) Bashamboo et al., 2010, Hum Mu Gene