PHENOTYPIC VARIABILITY OF IDENTICAL MUTATIONS IN THE ABCC8 GENE IN TWO FAMILIES

Klara Rozenkova1, Jirina Zapletalova2, Lenka Dusatkova1, Petra Dusatkova1, Barbora Obermannova1, Stepanka Pruhova1, Jan Lebl1, Zdenek Sumnik1

1Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
2Department of Pediatrics, University Hospital Olomouc, Palacky University, Olomouc, Czech Republic

Background

Mutations in the SUR1 subunit of the KATP channel encoded by the ABCC8 gene can result in diverse phenotypes ranging from Transient Neonatal Diabetes (TNDM) to type 2 diabetes in adulthood. These patients may benefit from sulphonylurea treatment.

Objective and Hypothesis

To describe the course of diabetes in two families with ABCC8 gene mutations and to assess the effect of sulphonylurea treatment.

Methods

Direct sequencing of the ABCC8 gene. Trial of sulphonylurea treatment.

RESULTS

Family 1:

A boy presented with TNDM at the age of 12 days with glycaemia of 25 mmol/l (BW 2240 g at 35 weeks gestation). Genetic analysis revealed mutation F132V in ABCC8 in this patient. Although this mutation had been previously described in a case of Permanent NDM unresponsive to sulphonylurea (Klupa et al., Clinical Endocrinology, 2009), we performed test with gliclazide with C-peptide increase (63.6 pmol/l to 502.5 pmol/l). The boy was then successfully treated with gliclazide which could be stopped at the age of 5 weeks. The same mutation was indentified in his mother having diabetes since the age of 13 years. She was treated with insulin pump and after her son’s diagnosis she was started on gliclazide which let to significant insulin dose reduction.

<table>
<thead>
<tr>
<th>Time</th>
<th>Glycaemia</th>
<th>C-peptide</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>5.9 mmol/l</td>
<td>63.6 pmol/l</td>
<td><0.200 mIU/l</td>
</tr>
<tr>
<td>120 min</td>
<td>5.9 mmol/l</td>
<td>502.5 pmol/l</td>
<td>8.5 mIU/l</td>
</tr>
</tbody>
</table>

Trial of sulphonylurea treatment

Gliclazide dose 0.5 mg/kg

Family 2:

A girl presented with TNDM immediately after birth with glycaemia of 30 mmol/l (BW 1520 g at 37 weeks gestation). Novel mutation R933Q in ABCC8 was identified and the response to glibenclamide was positive (C-peptide increase from 199 pmol/l to 776 pmol/l). She was successfully treated with gliclazide until the age of 7 weeks when the treatment could be stopped. The same mutation was found in her father who had been on sulphonylurea treatment for diabetes since the age of 39 years.

<table>
<thead>
<tr>
<th>Time</th>
<th>Glycaemia</th>
<th>C-peptide</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>8.3 mmol/l</td>
<td>199.0 pmol/l</td>
<td><0.200 mIU/l</td>
</tr>
<tr>
<td>120 min</td>
<td>5.2 mmol/l</td>
<td>776.0 pmol/l</td>
<td>11.3 mIU/l</td>
</tr>
</tbody>
</table>

Trial of sulphonylurea treatment

Gliclazide dose 0.5 mg/kg

Conclusion

• Identical mutations in the ABCC8 gene show different phenotypic expressivity and responsiveness to sulphonylurea therapy. The predictors that influence the diabetic phenotype remain unclear. We have shown that the F132V mutation previously described as unresponsive could be responsive to sulphonylurea.

Supported by a grant from the Czech Ministry of Health (NT 11402)
klara.rozenkova@fnmol.cz