Beckwith-Wiedemann Syndrome and Bilateral Phaeochromocytoma: a Diagnostic Challenge

Background

Beckwith-Wiedemann Syndrome (BWS) is a rare overgrowth disorder secondary to mutations in growth-regulatory genes on chromosome 11p15.5. A well-established association exists between BWS and benign and malignant tumours, most commonly Wilms’ tumour and hepatoblastoma. We describe a patient with BWS and bilateral phaeochromocytoma/paraganglioma (PPGL), which is much less well described.

Initial presentation

- A 14-year-old girl with genetically confirmed BWS presented with headaches, sweating, palpitations and hypertension (BP 177/117)
- Previously routine screening had detected a bladder rhabdomyoma (aged 2 years) and a pancreatoblastoma (aged 7 years), both surgically resected.
- Biochemistry was in keeping with a diagnosis of phaeochromocytoma (Table 1) and an abdominal MRI demonstrated bilateral complex adrenal cysts ≤ 2cm (Figure 1), however iodine-123-meta-iodobenzylguanidine (MIBG)-scan showed no abnormal sites of activity.

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr urine catecholamines</td>
<td>Normetadrenaline 1.6 umol</td>
<td>0.6-3.5</td>
</tr>
<tr>
<td></td>
<td>Metadrenaline 0.1 umol</td>
<td>0.2-1.4</td>
</tr>
<tr>
<td>24 hr urine catecholamines</td>
<td>Normetadrenaline 22.3 umol</td>
<td>0.6-3.5</td>
</tr>
<tr>
<td></td>
<td>Metadrenaline 0.8 umol</td>
<td>0.2-1.4</td>
</tr>
<tr>
<td>Plasma catecholamines</td>
<td>Normetadrenaline 9514 pmol/L</td>
<td>120-1180</td>
</tr>
<tr>
<td></td>
<td>Metadrenaline 295 pmol/L</td>
<td>80-510</td>
</tr>
</tbody>
</table>

Management

- A personalised management plan was created using the BSPEd endorsed Paediatric Endocrine Tumours consensus and the adult Phaeochromocytoma and Paraganglioma guideline
- She was commenced on the alpha-blocker Doxazosin 1mg once daily as an outpatient, then admitted for BP optimisation using phenoxybenzamine. This dose was gradually increased under close monitoring until complete alpha-blockade was achieved.
- Large volumes of intravenous fluids were necessary pre-operatively for volume expansion.
- Following successful bilateral adrenalectomies, histological analysis confirmed phaeochromocytoma.

Post-operative course

- Hydrocortisone was initially commenced intravenously intra-operatively, then converted to oral hydrocortisone (10 mg morning, 5 mg at lunchtime, 5 mg evening) and fludrocortisone 100mcg once daily once tolerated.
- Despite successful bilateral adrenalectomies she remained hypertensive (systolic BP >130) and further investigation found plasma normetanephrine remained elevated (4152pmol/L).
- A Gallium-68 DOTANOC PET-CT scan showed increased uptake in para-caval and left para-aortic lymph nodes and in the pancreas (Figure 3).

Learning points:

- This case demonstrates the importance of on-going vigilance for tumour development in patients with BWS.
- Phaeochromocytomas not detected on MIBG-scanning are more likely to be metastatic and due to SDHB mutations, which carry an unfavorable prognosis. This case highlights the importance of undertaking further imaging after a negative MIBG scan if the clinical and biochemical picture is highly suggestive of phaeochromocytoma.
- An updated guideline on the management of paediatric PPGLs is needed.

References

2. Paediatric Endocrine Tumours. Editor Spoussens H. BSPEd and UKCSG, published October 2005

There are no conflicts of interest to declare.