Molecular Confirmatory Test Improves the Accuracy of Congenital Adrenal Hyperplasia Diagnosis in Newborn Screening Program

Mirela Costa de Miranda1, Eliane Pereira dos Santos2, Daniel Fiordelisio de Carvalho1, Andresa De Sant’ Rodrigues1, Ivana Van Der Linden Nader2, João Amélia da Silva Junior1, Berenice B Mendonça1 and Tania A Bachega1

1Laboratório de Hormônios e Genética Molecular- LIM42, Unidade de Adrenal, Disc. de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil, 2ASSOCIAÇÃO DE PAIS E AMIGOS DOS EXCEPCIONAIS (APAE) do Estado de Goiás

Introduction and Objective

Congenital adrenal hyperplasia (CAH) is a life threatening disorder presenting the criteria for inclusion in newborn screening (NBS) programs. NBS is highly effective in identifying the severe cases; however, the high rate of false-positive (FPR) results remains an important issue. Therefore, positive neonatal results must be confirmed by serum 17OHP levels, which present, though, a great overlap among cases with SW, SV and NC forms, leading to therapeutic implications. Additionally, some stressed NB remains with increased hormonal confirmatory tests, needing prolonged follow up.

Objective: To evaluate the utility of molecular analysis to improve CAH diagnosis in our NBS program.

Methods

Between 1999-2014, 86 newborns (NB) were submitted to DNA analysis due to positive tests in NBS program of Goias State – Brazil. Molecular study was performed using peripheral DNA samples. Neonatal 17OHP levels were measured by IFMA assay (Autodefita-Perkin Elmer) and adjusted for birth-weight. Confirmatory tests included serum 17OHP, androstenedione, testosterone measurements. CYP21A2 genotypes were determined by entire CYP21A2 sequencing and MLPA technique.

Results

• 46 NB were described as presenting some sign of dehydration/mild hyponatremia and/or atypical genitalia:
 - 42 of them presented genotypes predicting severe classical forms (19 males)
 - Among patients with the classical form, 4 females with severe external genitalia virilization were assigned in male social sex, being subsequently corrected.
 - 1 presented with NC genotype (girl with isolated clitoromegaly) and 3 presented normal genotype: 1 premature girl with pseudo-clitoromegaly and 2 males with loss of weight due to neonatal stress conditions
 - 7 males with the classical genotypes, 3 SW and 4 SV
 - 33 non-affected patients were prevented to receive unnecessary treatment, 16/33 with normal genotype were discharged from follow-up

Among patients with classical genotype, 18 had the SW genotype, 23 genotypes predicting SW or SV forms and 5 had the SV genotype. Mean N17OHP levels in classical patients was 271 ng/mL, whereas in the others, including false-positive and non-classical newborns, the mean was 91 ng/mL. Even thought, a great overlap of 17-OHP levels among all genotypes was observed.

Mutations derived from pseudogene events were found in 88% of the alleles: 13% carried large gene rearrangements and 87% point mutations. Twenty eight percent of patients carried two point mutations in the same allele.

The most frequent point mutations were I2 splice (35%), p.Q318X (23%) and p.R356W (19% of alleles). Novel mutations were found in 12% of the alleles: p.G424S, p.R408C and IVS2-2A>G, all presented with gene founder effect.

Conclusion

We demonstrated that molecular testing was a useful supplemental tool in identifying false-positive results in CAH-NBS, preventing unnecessary follow-up of newborns with inconclusive hormonal tests. Additionally, the high frequency of novel mutations indicated the importance of adding gene sequencing to improve the accuracy of molecular confirmatory tests.