Introduction

Disorders of sexual development (DSD) define a group of congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical (1-2). Karyotype is the primary root in DSD classification. The category “Sex Chromosome DSD” includes all subjects with a sex chromosome anomaly and is a major component of DSD causes (3).

45,X/46,XY mosaicism and its variants result in a large clinical spectrum of DSD ranging from female patients with Turner’s syndrome to normal appearing males. Phenotypic variability depends on many factors including the presence of the SRY gene, the complexity of structural rearrangements, and the prevalence of the 45, X cell line (4).

Short stature is a well-reported feature in patients with 45,X/46,XY mosaicism as a result of SHOX gene haploinsufficiency in the 45,X cell line (5). In these patients, the presence of some specific regions on the Y chromosome increases the risk for the development of gonadal malignant germ cell tumors that appear to be negatively correlated with the degree of virilisation (6).

Clinical Material

We analyzed the clinical records of 50 sex chromosome DSD patients (karyotype 45,X/46,XY or variants) evaluated between January 1/2000 and January 1/2016 at the Endocrine Department, Hospital de Pediatría “J.P. Garrahan”. Cytogenetic study was performed on peripheral blood lymphocytes using the G-banding technique, in at least 30 metaphases.

Patients were divided according to external genitalia into 2 groups (Gr):

- **Gr1**: normal female phenotype (Turner’s syndrome, n=18)
- **Gr2**: atypical genitalia (n=32). Sex assignment: 10 Female / 22 Male.

Spontaneous pubertal development was observed in all the male assigned patients that have reached pubertal years (n:9). None of them required testosterone replacement. We also identified one patient with normal male phenotype evaluated because of short stature that was not included in the analysis.

Bilateral gonadectomy was performed in every patient from Gr1 and all the female assigned patients from Gr2. Bilateral biopsy was requested at diagnosis in all the male assigned patients from Gr2 but, at present, data is available for the histological analysis from 32 gonads.

Results

Gonadal Histology according to phenotype

<table>
<thead>
<tr>
<th>Gr</th>
<th>Female</th>
<th>Male</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr1</td>
<td>6 (40)</td>
<td>2 (10)</td>
<td>8 (40)</td>
</tr>
<tr>
<td>Gr2</td>
<td>27 (79)</td>
<td>2 (10)</td>
<td>29 (89)</td>
</tr>
<tr>
<td>Total</td>
<td>33 (56)</td>
<td>12 (20)</td>
<td>45 (86)</td>
</tr>
</tbody>
</table>

Gonadal Neoplasia according to phenotype

<table>
<thead>
<tr>
<th>Gr</th>
<th>Neoplasia n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5% (15)</td>
</tr>
</tbody>
</table>

Case 1: Profilactic gonadectomy at 6 years of age revealed gonadoblastoma and disgerminoma in the left gonad.

Case 2: At the age of 15 years, virilization and bilateral aneurysal tumors lead to the diagnosis of Turner syndrome with bilateral gonadoblastoma-dysgerminoma-embryonal carcinoma

Case 3: Profilactic gonadectomy at 17.9 years of age revealed bilateral gonadoblastoma.

Discussion

In our cohort of 45,X/46,XY chromosomal DSD patients atypical genitalia was the most frequent phenotype. Even though a great variability in the gonadal histological findings was observed (probably related to different genetic balance in the mosaic gonad), all the male assigned patients that reached puberty presented preserved interstitial testicular function. A trend towards a higher gonadal malignancy risk was observed in Turner’s syndrome patients and those less virilised from Gr2.

Short stature is a relevant problem to be addressed in the care of these population of patients.

References

