Severe Hypertension in a Girl: Cushing Syndrome or Apparent Mineralocorticoid Excess Syndrome? Utility of Molecular Study

Seiltgens C1,2, Carvajal C1, Pinchet C1,2, Lacourt P1, Fardella C3, Godoy C1,2
1. Endocrinology Unit, Pediatric Department, Pontificia Universidad Católica de Chile.
2. Adult Endocrinology Department and Endocrinology Laboratory, Pontificia Universidad Católica de Chile.

Introduction

Apparent mineralocorticoids excess syndrome (AME) is an unusual cause of hypertension in childhood, caused by genetic mutation of type 2 11β-hidroxysteroid deshydrogenase (11BHS2) enzyme, which metabolizes cortisol to cortisone.

Patients with AME usually born from consanguineous parents and could have some special clinical and laboratory characteristics that suggest the diagnosis such as:
- Severe hypertension.
- Small for gestational age (SGA)
- Nephrocalcinosis
- Persistent hypokalemia
- High plasma cortisol/cortisone relation (F/E).

Molecular study of 11B-HSD2 is a useful tool, since it helps in the diagnosis of AME and this allows to use a specific treatment for this clinical entity.

Different mutations have been described in families in different countries as case reports.

Objective

To tell the clinical and laboratory presentation of a girl with hypertension because of AME.

Clinical Case

A 2-years old girl was admitted to hospital for mild head trauma. During her hospitalization she showed severe hypertension, requiring 4 drugs to control partially her blood pressure.

Clinical background: Fullterm Small for gestational age newborn. Second daughter of normotensive parents who are first degree cousins; she has a normotensive sister.

Past medical history: recurrent pneumonia and viral hypertrophic myocardopathy.

Physical exam: No characteristic facium; no Cushing signs were noted.

Hypertension study

Renal US: bilateral Nephrocalcinosis, mild pyelectasia, no arterial stenosis; normal renal function.

Urinary catecholamines, urinary metanephrines; androstenedione; 17OH progesterone, prolactine and thyroid hormones resulted normal.

Head and abdominal MRI were normal.

11BHS2 genetic study was performed and showed the mutation R213C on exon 3, confirming AME.

Table 1. Relevant laboratory results of the patient with AME.

<table>
<thead>
<tr>
<th>Exam</th>
<th>Result</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone (ng/dL)</td>
<td>0.132</td>
<td>0.146</td>
</tr>
<tr>
<td>ACTH (ug/ml)</td>
<td>8.00 hrs</td>
<td>13.4</td>
</tr>
<tr>
<td>Night salivary cortisol (11 pm) (ug/dL)</td>
<td>0.332</td>
<td>0.3-26</td>
</tr>
<tr>
<td>K (without supplementation)</td>
<td>2.9</td>
<td>3.5 – 5.5</td>
</tr>
<tr>
<td>Night plasmatic Cortisol (ug/dL)</td>
<td>3.8</td>
<td>Suppressed -> <1.8</td>
</tr>
<tr>
<td>Cortisol after 0.3 mg dexam (ug/dL)</td>
<td>2.3</td>
<td>Not determined</td>
</tr>
<tr>
<td>Cortisol /cortisone relation (F/E)</td>
<td>175,57</td>
<td>Children : 1.7 – 5.6</td>
</tr>
</tbody>
</table>

Conclusion

Although AME is a really unusual disease it must be considered in the differential diagnosis of severe hypertension in childhood when the clinical record is compatible. AME has normal levels of cortisol, therefore the biochemical hypercortisolism dificulted the diagnosis in this patient, but molecular study helped to do the correct diagnosis.

References: