P1-596

Functional *in vitro* characterization of two novel germinal STAT3 mutations associated with short stature, immunodeficiency and autoimmune disease.

Marina Gutiérrez 1, Daniela Di Giovanni 1, Liliana Karabatas 1, Sabina Domenech 2, Miguel Blanco 2, Nora Sanguinetti 3, Liliana Bezrodni 4, Ana Keselman 1, Lucía Martucci 1, Liliana Gutiérrez 1, Daniela Di Giovanni 1, Soledad Caldriola 1, Maria Esnaola Acoziti 1, Nana-Hawa Jones 1, Vivian Hwa 1, Santiago Revale 2, Martin Vázquez 1, Héctor Jasper 1, Ashish Kumar 1, Horacio Domenech 1.

(1) Centro de Investigaciones Endocrinológicas ‘Dr César Bergada’ (CIEDE) CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina. (2) Endocrinología, Hospital Universitario Austral, Buenos Aires, Argentina. (3) Inmunología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina. (4) Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. (5) Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Rosario, Argentina. (6) Division of BM transplantation and Immunodeficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA.

INTRODUCTION AND OBJECTIVES

We have recently reported (1) the molecular diagnosis of two patients with severe growth failure associated with a spectrum of early-onset autoimmune disease and immunodeficiency, presenting heterozygous *de novo* mutations, c.1847_1849DelAAG (p.E616Del) and c.1276T>C (p.C426R) in the STAT3 gene.

We aimed to study the impact of these mutations under basal and GH- or IL-6-stimulated STAT3 activity.

METHODS

- STAT3 gene variants were generated by site-directed mutagenesis.
- Variants were transected into HEK293T cells transiently expressing hGHR.
- STAT3-responsive dual Firefly/Renilla Luciferase Cignal reporter system (Qiagen) was used for evaluating transcriptional activity. R423Q-STAT3 was used as negative control (2).
- IL-6 (20 ng/mL) and GH (200 ng/mL) effects on expression and phosphorylation of STAT3 were assessed by Western immunoblot.

CONCLUSIONS

- E616Del- and C426R-STAT3 variants are GAIN-OF-FUNCTION mutations displaying constitutive transcriptional activity in the absence of stimuli, despite the observation that they are NOT constitutively phosphorylated.
- These findings suggest that gain-of-function STAT3 variants may exert their transcriptional activity through different mechanisms depending upon the type of mutation and the affected protein domain.
- How these STAT3 mutants affect STAT5b in the GH-signaling pathway remains to be studied.

REFERENCES

Supported by PCT 2010 NF 1516 (ANPCYT) and SANDOZ International GmbH, Business Unit Biopharmaceuticals. The authors have nothing to disclose.