FGFR1 loss-of-function mutations of in three Japanese patients with isolated hypogonadotropic hypogonadism and split hand/foot malformation

Authors
Kohnosuke Ohtaka; Rie Yamaguchi; Hideaki Yagasaki; Tatsuya Miyoshi; Yukihiro Hasegawa; Tomonobu Hasegawa; Hideki Miyoshi; Maki Fukami; Tsutomu Ogata

Hospitals
1) Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; 2) Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan; 3) Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; 4) Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and 5) Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.

METHODS

OBJECTIVES
Background: Heterozygous loss-of-function mutations of FGFR1 are known to cause Kallmann syndrome (KS) and isolated hypogonadotropic hypogonadism (IHH). Furthermore, recent studies have also indicated that heterozygous loss-of-function mutations may lead to IHH and split hand/foot malformation (SHFM).

Objective and hypotheses: The objective of this study was to examine FGFR1 in three Japanese patients with IHH and SHFM.

METHODS

Method: This study consisted of three Japanese patients (cases 1–3) with IHH and SHFM. Case 1 was a 3-month-old boy with microcephaly, low serum LH (<0.1 mL/mL) and testosterone (<0.03 ng/mL) at mini-puberty, and right split hand. Case 2 was a 17-year-old boy with no pubertal development, low serum LH (<0.1 mL/mL) and testosterone (<0.03 ng/mL), and bilateral split hands and feet. Case 3 was a 34-year-old female with primary amenorrhea, low serum LH (0.4 mL/mL) and E2 (<10 pg/mL), and left split hand. We performed direct sequencing for FGFR1 coding regions and their flanking splice sites, luciferase analysis for missense mutations, and RT-PCR based sequence analysis and in silico analysis for a splice donor site mutation.

RESULTS

Direct sequencing identified two heterozygous missense mutations (a previously reported p.G97S in case 1 and a novel p.R742T in case 2) and a novel heterozygous splice donor site mutation (IVS12+1G>T in case 3). The two missense mutations had drastically reduced luciferase activities, without a dominant negative effect. The splice donor site mutation was found to have yielded a small amount of mRNA skipping exon 12 (p.Ser512_Gly553delinsCys), and was predicted to have produced two aberrant mRNAs that satisfy the condition for nonsense-mediated mRNA decay, by using an alternative splice donor site (p.G553fsX628) and by escaping splicing at the IVS12 exon boundary

CONCLUSIONS
The results provide further support for the notion that heterozygous loss-of-function mutations of FGFR1 cause IHH with SHFM.

REFERENCES

Table

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age at examination</th>
<th>Sex</th>
<th>Age at examination</th>
<th>Sex</th>
<th>Age at examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>3 months</td>
<td>Male</td>
<td>17.5 years</td>
<td>Female</td>
<td>24 years</td>
</tr>
</tbody>
</table>

References