Effects of a Stressful Environment (SE) on Height, BMI and Menarche Age
Alina German¹, Gustavo Mesch², Ze’ev Hochberg³
¹Departments of Pediatrics, Bnai Zion Medical Center, Clalit HMO Haifa, Israel
²Department of Sociology & Anthropology, University of Haifa, Haifa, Israel
³Technion – Israel Institute of Technology, Haifa, Israel

BACKGROUND

- Growth is highly adaptable, both genetically over the long-term and by short-term plasticity. Differences in height can reflect adaptations to different environments at individual and population levels.
- Growth in height is considered an indicator of health and well-being of an individual and a population, especially in developing countries.
- SE is a major problem globally, and children are exposed to various kinds of SE in different countries.
- Children’s exposure to stress predicts poor health, but its effects on growth are understudied, while poor growth is another predictor of poor health.

METHODS

- Data by country of height, BMI, menarche in 1996-2005 were collected from WHO reports and scientific articles.
- Countries were ranked and scored for their SE in 1990-2000, built on seven indicators (World Databank, Transparency International):
 - annual homicide rates
 - GDP per capita US (on a purchasing-power-parity basis)
 - income inequality (Gini coefficient)
 - corruption perception
 - Unemployment
 - urban air pollution (weighted concentration for PM2.5 pollutants)
 - life expectancy at birth (years).
- Z-transformation was done to the SE indicators.
- Only countries with data available for height, BMI, menarche, and all seven SE indicators were included to a total of 71 countries.

RESULTS

- Correlation coefficients R between stress indicators and male and female height, BMI, menarche age, *** p<0.01

<table>
<thead>
<tr>
<th></th>
<th>GDP</th>
<th>Life expectancy</th>
<th>Air pollution</th>
<th>Unemployment</th>
<th>Corruption</th>
<th>Inequality</th>
<th>Homicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male height</td>
<td>0.56**</td>
<td>0.32**</td>
<td>0.52**</td>
<td>-0.37**</td>
<td>0.56**</td>
<td>0.58**</td>
<td>0.22</td>
</tr>
<tr>
<td>Female height</td>
<td>0.52**</td>
<td>0.28**</td>
<td>0.43**</td>
<td>-0.33**</td>
<td>0.52**</td>
<td>0.55**</td>
<td>0.26</td>
</tr>
<tr>
<td>Male BMI</td>
<td>0.70**</td>
<td>0.56**</td>
<td>0.24</td>
<td>-0.25**</td>
<td>0.35**</td>
<td>0.48**</td>
<td>0.25**</td>
</tr>
<tr>
<td>Female BMI</td>
<td>0.45**</td>
<td>0.39**</td>
<td>0.013</td>
<td>-0.40**</td>
<td>-0.11</td>
<td>0.14</td>
<td>-0.13</td>
</tr>
<tr>
<td>Menarche age</td>
<td>0.56**</td>
<td>-0.38**</td>
<td>-0.26</td>
<td>0.17</td>
<td>-0.33**</td>
<td>-0.15</td>
<td>-0.076</td>
</tr>
</tbody>
</table>

CONCLUSIONS

1. Young adult height, as a measure of child’s growth, is a strong indicator of SE.
2. BMI is a weaker indicator.
3. Male’s height is affected by SE more than female’s height.
4. Female’s BMI and menarche show a U-shape response to stress; delayed menarche and lower BMI are found in the lowest and highest SE countries.
5. The strongest indicators for poor growth is the QOL cluster (pollution, life expectancy, GDP and corruption), followed by the Social cluster (homicide and economic inequality).

PERSPECTIVE

Comparing SE across countries, we identified leverage points to reducing vulnerability to SE to social and emotional stress. Identification of particularly vulnerable nations or regions can act as an entry point for both understanding and addressing the processes that cause and exacerbate vulnerability.