Thyroid dysfunction may predispose to imbalanced body composition. The aim of the study is to evaluate bone, muscle, and fat mass in teenagers with congenital hypothyroidism (CH) and correlate their bone profile with laboratory parameters, in an effort towards more effective lifestyle counselling.

To date, eighteen teenagers have been assessed, aged 14-18 years (12 female subjects); four with thyroid gland agenesis, ten with ectopic thyroid gland, two with hypoplastic thyroid gland and two with dyshormonogenesis. Five patients report a total of five post-traumatic fractures of long bones. 55% receive adequate calcium through their diet and only 33% exercise regularly. Their laboratory results (lipid profile, TFTs, Ca, P, Mg, creatinine, ALP, 25(OH)D, PTH) were within reference range, with a tendency of high-normal TSH values amongst boys. Compared to controls, the patients were heavier, with marginally higher fat mass, whereas their bone and muscle mass were comparable. A positive correlation was found between body weight and fat mass, which in turn was negatively correlated to vitamin D levels ($r = -0.77$, $p<0.01$), figure 1.

Overweight patients with congenital hypothyroidism tend to have more pronounced adipose tissue accumulation and lower vitamin D levels, therefore they should be targeted towards regular exercise and a balanced diet, with adequate calcium intake. In patients whose hypothyroidism is under control, bone and muscle mass are not particularly affected.

RESULTS

To date, eighteen teenagers have been assessed, aged 14-18 years (12 female subjects); four with thyroid gland agenesis, ten with ectopic thyroid gland, two with hypoplastic thyroid gland and two with dyshormonogenesis. Five patients report a total of five post-traumatic fractures of long bones. 55% receive adequate calcium through their diet and only 33% exercise regularly. Their laboratory results (lipid profile, TFTs, Ca, P, Mg, creatinine, 25(OH)D, PTH) were within reference range, with a tendency of high-normal TSH values amongst boys. Compared to controls, the patients were heavier, with marginally higher fat mass, whereas their bone and muscle mass were comparable. A positive correlation was found between body weight and fat mass, which in turn was negatively correlated to vitamin D levels ($r = -0.77$, $p<0.01$), figure 1.

CONCLUSIONS

Overweight patients with congenital hypothyroidism tend to have more pronounced adipose tissue accumulation and lower vitamin D levels, therefore they should be targeted towards regular exercise and a balanced diet, with adequate calcium intake. In patients whose hypothyroidism is under control, bone and muscle mass are not particularly affected.