Influences of Growth Hormone Receptor Exon 3 and -202 A/C IGFBP3 Polymorphism on 1-year Follow-up Outcome of Growth Hormone Treatment in Korean Children with Growth Hormone Deficiency

Joon Woo Baek, YeonJoung Oh, Min Jae Kang, Il Tae Hwang, Seung Yang
Department of Pediatrics, College of Medicine, Hallym University

Disclosure of conflict of interest None to declare

OBJECTIVES

The growth hormone receptor (GHR) exon3 and the -202 A/C IGFBP3 polymorphisms have been suggested to affect responses to recombinant human growth hormone (rhGH) therapy in some individuals with short stature.

This study aims
1) To investigate the influences of the GHR exon 3 and the -202 A/C IGFBP3 polymorphisms on baseline height and the 1 year follow-up outcomes of GH treatment in Korean children with growth hormone deficiency (GHD)
2) To assess the combined effect of the two polymorphisms on first year outcome of GH therapy

METHODS

1. Subjects
1) genotyping: 72 patients with GHD (32 girls and 40 boys)
2) 1-yr treatment outcome: 49 patients who remained prepubertal state after 1-yr GH therapy
2. anthropometry
- height, weight, body mass index
- standard deviation score (SDS)
3. Molecular analysis
 genotyping: multiplex PCR assay
 1) GHR-exon 3 genotypes: d3/d3, d3/fl, fl/fl
 2) -202 A/C IGFBP3 genotypes: A/A, A/C, C/C
4. Hormonal assays
 IGF-I (SDS), IGFBP-3 (SDS)
 linear interpolation based on the percentile data by Korean reference (2012)

RESULTS

Table 2. First year Follow-up outcome of Growth Hormone Treatment according to genotypes in 49 children

<table>
<thead>
<tr>
<th>GHR exon 3 genotype</th>
<th>-202A/CIGFBP3 genotype</th>
<th>Number</th>
<th>P</th>
<th>A/A</th>
<th>A/C+C/C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>d3/d3+fl/fl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl/fl</td>
<td></td>
<td>7</td>
<td>42</td>
<td>22</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>CA (year)</td>
<td></td>
<td>10.0±3.5</td>
<td>9.0±2.4</td>
<td>0.836</td>
<td>10.1±2.4</td>
<td>8.6±2.7</td>
</tr>
<tr>
<td>BA (year)</td>
<td></td>
<td>7.0±3.9</td>
<td>8.0±2.7</td>
<td>0.858</td>
<td>8.2±2.6</td>
<td>7.8±2.8</td>
</tr>
<tr>
<td>GH dose (µg/kg/d)</td>
<td></td>
<td>32.3±1.7</td>
<td>33.6±1.8</td>
<td>0.802</td>
<td>32.9±1.1</td>
<td>33.8±2.2</td>
</tr>
<tr>
<td>Height gain (cm)</td>
<td></td>
<td>9.4±2.2</td>
<td>8.1±1.7</td>
<td>0.086</td>
<td>8.3±2.0</td>
<td>8.3±1.7</td>
</tr>
<tr>
<td>Height SDS</td>
<td></td>
<td>0.7±0.5</td>
<td>0.5±0.3</td>
<td>0.191</td>
<td>0.6±0.4</td>
<td>0.6±0.3</td>
</tr>
<tr>
<td>BMI SDS</td>
<td></td>
<td>0.3±1.1</td>
<td>0.0±0.5</td>
<td>0.597</td>
<td>0.0±0.4</td>
<td>0.1±0.8</td>
</tr>
<tr>
<td>IGF-I SDS</td>
<td></td>
<td>0.8±0.8</td>
<td>1.4±0.9</td>
<td>0.099</td>
<td>1.0±0.7</td>
<td>1.6±1.0</td>
</tr>
<tr>
<td>IGFBP-3 SDS</td>
<td></td>
<td>1.3±1.1</td>
<td>1.5±1.3</td>
<td>0.754</td>
<td>1.4±0.9</td>
<td>1.6±1.5</td>
</tr>
</tbody>
</table>

SUMMARY

1. Our results demonstrated that the frequency of fl/fl and AA genotype in our subjects was higher than the frequency in European population.
2. Baseline height SDS was not different among children with each GHR exon 3 genotypes and each -202 A/C IGFBP-3 genotypes.
3. Height gain during the first year of GH replacement therapy was slightly higher in subjects who have GHRd3 allele. However, we did not demonstrate a significant difference between the presence and absence of GHRd3 allele.
4. There was no significant difference in height gain between two -202 IGFBP-3 genotype groups.
5. Combined analysis showed that GHR exon 3 and -202 A/C IGFBP3 genotypes had no interactive effect on the first year growth velocity

CONCLUSION

In our study, 1-year treatment outcomes were similar among GHD patients with each genotypic variation, suggesting that the two polymorphisms may not be major factors in the modulation of individual responses to GH therapy in Korean children with GHD.