A Novel Animal Model to Study 21-Hydroxylase Deficiency *in vivo*

Andreas Zaucker, Aliesha Griffin, Karl-Heinz Storbeck, Tülay Güran, Nazia Thakur, Meltem Weger, Angela Taylor, Ferenc Mueller & Nils Krone

1 University of Birmingham, Birmingham, UK
2 University of Sheffield, Sheffield, UK
3 Stellenbosch University, Stellenbosch, RSA

OBJECTIVES

21-hydroxylase deficiency (21OHD) resulting in imbalances in steroid hormones and a dysregulated hypothalamus pituitary adrenal (HPA) axis is the major cause of the disease congenital adrenal hyperplasia (CAH). Several findings highlight the need for new *in vivo* models to study 21-hydroxylase deficiency:

- In *in vitro* studies on CAH mutations do not always correlate with patient phenotypes
- 21OHD is difficult to study in mice -> mutants are not viable
- Incomplete understanding of systemic consequences of 21OHD

Aim: Zebrafish model for 21-hydroxylase deficiency

METHODS

Cyp21a2 mutants were generated by TALEN-mediated mutagenesis. The target region contained a BseYI restriction site, used for genotyping. The mutant phenotype was characterised at 120 hpf (hours post fertilisation), when the HPI axis is functional.

Zebrafish cyp21a2 mutants show hallmarks of 21OHD

- Cyp21a2 mutants have enlarged interrenal tissue (zebrafish adrenal counterpart)
- Impaired cortisol synthesis and overstimulation of the HPI axis in cyp21a2 mutants
- Reduced expression of glucocorticoid response genes in cyp21a2 mutants

CONCLUSIONS

Zebrafish cyp21a2 mutants are a promising model for 21OHD

1. 21-hydroxylase is conserved in zebrafish
2. Zebrafish cyp21a2 mutants have impaired GC signalling
3. Zebrafish cyp21a2 mutants have dysregulated HPI axis

ACKNOWLEDGEMENTS

Society for Endocrinology
Early Career Grant to Andreas Zaucker
IFCAH
Project grant to Nils Krone

I declare that I have no potential conflict of interest