INTRODUCTION

- Several pathologic conditions must be considered and ruled out in children with significant short stature.
- A large number of such children remain without a definitive diagnosis and are labeled as having idiopathic short stature (ISS).
- In a small proportion of the population, short stature is caused by specific genetic variations with large effect.
- Familial isolated growth hormone deficiency (IGHD) type II is autosomal dominantly inherited and caused by splice-site mutations and nucleotide substitutions in the GH1 gene.

OBJECTIVE

- This study aimed to identify the etiology of short stature in a four-generation family with dominantly inherited short stature.

CASE PRESENTATION

- P1 presented at 9 years of age for evaluation of proportional short stature (-3 SD).
- Workup revealed low IGF-1 of 27 ng/ml (99 – 376) and IGFBP-3 of 1260 ng/ml (2769 – 4790).
- Growth hormone stimulation test was normal with a peak concentration of 15.9 ng/ml.
- Initially diagnosed with ISS.
- Strong family history of short stature appeared to follow an autosomal dominant mode of inheritance which prompted further investigation with WES.

RESULTS

- Whole Exome Sequencing (WES)

 - 86,076 variants
 - 1054 AD variants
 - 325 Quality control variants
 - 139 Excluded noncoding / synonymous variants
 - 1 Single heterozygous variant present in affected individuals

 Figure 1. WES was performed in P1, P2, S1, B1 and GGMM. We identified the pathogenic variant R183H in GH1 which segregated in the affected individuals.

 Figure 2. P1 and P2 underwent repeat GH stimulation tests and were found to have delayed peak GH responses. P1 had a peak GH of 15.4 ng/dL, and P2 had a peak GH of 9.9 ng/dL.

CONCLUSIONS

- WES rapidly identified a genetic etiology in this family with dominantly inherited short stature with normal stimulated growth hormone peaks.
- Genetic testing should be strongly considered in cases of familial short stature even when peak stimulated growth hormone concentrations are normal.
- The missense mutation R183H is a well described genetic variant that causes familial IGHD type II. Individuals with this mutation have releasable GH stores, but GH secretion is impaired resulting in short stature with a broad spectrum of phenotypes.
- It remains unclear whether or not adult patients with this mutation suffer the consequences of adult GH deficiency. We are implementing a protocol to investigate body composition, skeletal integrity, cardiovascular risk profile and the overall quality of life in the affected adults of this kindred.

REFERENCES