Gene Expression Profiling of Children with Growth Hormone Deficiency Prior to Treatment with Recombinant Human Growth Hormone is Associated with Growth Response Over 5 Years of Therapy

Adam Stevens1, Philip Murray2, Ekaterina Koledova2, Pierre Chatelain2, Peter Clayton3
1University of Manchester and Royal Manchester Children’s Hospital, Manchester, UK; 2Merck KGaA, Darmstadt, Germany; 3Université Claude Bernard, Lyon, France

INTRODUCTION

• The relationship between pre-treatment gene expression and long-term growth response in growth hormone deficiency (GHD) is unknown.
• Prediction of long-term responses to recombinant human growth hormone (r-hGH) therapy would enable better decision-making about the start and maintenance doses and, hence, improve the cost-benefit ratio of r-hGH therapy.

OBJECTIVES

• To investigate the relationship between baseline gene expression and response to r-hGH over 5 years of therapy in children with GHD.

METHODS

• Patient population
 – Pre-pubertal children with GHD (N=50) were enrolled from the PREDICT (NCT00255612) and PREDICT long-term follow-up (NCT00699855) studies.
 – Treatment
 – Children started with a 35 μg/kg/day r-hGH dose (all same brand, Saizen®) for the first month.
 – During the long-term follow-up period, patients could use any available r-hGH at a dose recommended by the physician.
• Genomic analysis
 – Baseline whole-blood gene expression was determined from peripheral blood mononuclear cells using Affymetrix U133 v2.0 microarray and Gene Expression Barcode 3.0.
 – Gene expression data were normalised for Tanner stage.
• Analysis of network modules was performed using Moduland algorithm.
• A Random Forest algorithm was tested for prediction of growth response.
• Statistical analyses
 – Height velocity (cm/year) on r-hGH over 5 years was used as the marker for growth response.
 – Two groups of patients were defined according to growth response over 5 years of treatment:
 – Always above the median (G1, n=9).
 – Always below the median (G2, n=10).
 – The effect of age, gender and distance to target height were also assessed.
 – The robustness of the gene expression markers was assessed using a one-way permutation test (1000 permutations) in R 3.3.1.

RESULTS

Patient Characteristics and Height Velocity

• The patient characteristics and the height velocity for the complete PREDICT LTFU cohort (N=125) are shown in Tables 1 and 2.

• There was no difference in age, gender and distance to target height between the G1 and G2 height velocity groups (data not shown).

CONCLUSIONS

• We have identified genes uniquely expressed before treatment in 50 pre-pubertal patients with GHD that are associated with quality of growth response (responsiveness) over 5 years of therapy.
• Responsiveness to r-hGH therapy seems to be genetically controlled in GHD, which may have implications for personalised therapy.
• These gene expression markers may be used prior to r-hGH treatment to identify which patients will be good or poor long-term responders.
• Further assessment is required to validate the predictive value and determine the functional significance of the gene subsets we have identified.

ACKNOWLEDGMENTS

The authors would like to thank the patients who participated in the PREDICT trial and their parents and guardians. This trial was sponsored by Merck KGaA, Darmstadt, Germany. Medical writing support was provided by Steven Goodrick of inScience Communications, London, UK, sponsored by Merck KGaA, Darmstadt, Germany. The authors would like to thank the patients who participated in the PREDICT trial and their parents and guardians.

DISCLOSURES

AS, PW, FGC, PCL have all received honoraria and/or research support from Merck KGaA, Darmstadt, Germany. WA and LK are employees of Merck KGaA, Darmstadt, Germany. This study was sponsored by Merck KGaA, Darmstadt, Germany.

REFERENCES

Table 1. Patient Characteristics of Whole PREDICT LTFU Cohort

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>GHD (N=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>78 (62.4%):47 (37.6%)</td>
</tr>
<tr>
<td>Age at baseline (years)</td>
<td>9.6 (6.3, 11.2)</td>
</tr>
<tr>
<td>Baseline height SDS</td>
<td>–2.2 (–2.7, –1.7)</td>
</tr>
<tr>
<td>Baseline BMI SDS</td>
<td>–1.4 (–2.1, –0.8)</td>
</tr>
<tr>
<td>Bone age (years)</td>
<td>7.0 (5.5, 9.5)</td>
</tr>
<tr>
<td>Basal height velocity (cm/year)</td>
<td>4.0 (3.0, 6.0)</td>
</tr>
<tr>
<td>Mid-parental height SDS</td>
<td>–0.8 (–1.7, –0.1)</td>
</tr>
<tr>
<td>GH peak response (μg/L)</td>
<td>4.1 (2.4, 5.6)</td>
</tr>
</tbody>
</table>

Table 2. Height Velocity (cm/year) Throughout Treatment

<table>
<thead>
<tr>
<th>Year</th>
<th>GHD (N=125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (±SD)</td>
<td>Median (min, max)</td>
</tr>
<tr>
<td>Year 1</td>
<td>8.9 (±2.1)</td>
</tr>
<tr>
<td>Year 2</td>
<td>7.4 (±1.6)</td>
</tr>
<tr>
<td>Year 3</td>
<td>6.7 (±2.0)</td>
</tr>
<tr>
<td>Year 4</td>
<td>6.1 (±2.3)</td>
</tr>
<tr>
<td>Year 5</td>
<td>5.1 (±2.3)</td>
</tr>
</tbody>
</table>

Data are mean (±SD) or median (min, max).