Carriers of CYP21A2 mutations have a decreased mortality in infectious diseases: A national population registry study

Anna Nordenström1,2, Johan Svensson1,2, Svetlana Lajic1,2, Louise Frisén, Agneta Nordskold1, Christina Norryb2, Catarina Almqvist Malmros2, Henrik Falhammar4, Depts of Women’s and Children’s Health, 1Dept of Medical Epidemiology and Biostatistics Karolinska Institutet, 2Pediatric Endocrinology, 3Endocrinology, Metabolism and Diabetes Stockholm, Sweden.

Conclusions
- **CYP21A2 carriers have a lower mortality in infectious diseases**
- Pneumonia as the cause of death was uncommon
- A higher and more prompt cortisol response could be the explanation for an evolutionary advantage of being a carrier of a CYP21A2

Background

Congenital adrenal hyperplasia (CAH) is a relatively common monogenic recessive disorder with an incidence of 1/15 000 in most populations. It has been suggested that CYP21A2 deficiency is relatively common because it may confer a survival advantage being a carrier. Carriers of CYP21A2 mutations typically do not have clinical symptoms but have a defined phenotype. The cortisol response to ACTH stimulation in CYP21A2 carriers has been shown to be both more prompt and increased compared to healthy, non-carrier, controls. The carrier frequency the Swedish population is about 1:50 individuals for a mutation in the CYP21A2 gene and 1:70 for a classic CYP21A2 mutation. The over all mortality is lower for women than men.

We investigated the mortality, and cause of mortality in carriers compared to population controls, for men and women.

Methods

A total of 1143 (561 men, 582 women) obligate carriers of a CYP21A2 mutation, were identified as parents of patients with known CAH. We used the Swedish National CAH Registry encompassing more than 700 CAH patients and the Multigeneration Registry. Controls were identified from the general population, 100 controls per CYP21A2 carrier. The mortality and cause of death was identified through the Swedish Cause of Death Registry. The Hazard Ratio (HR) confidence intervals and p values were calculated.

Results

The overall mortality was significantly lower in carriers of one of the classic CYP21A2 mutations compared to the general population, for women (p=0.05), but not for the whole cohort (p=0.13).

Infection as the cause of death was significantly lower in the whole cohort with Hazard Ratio 0.65 (CI 95%, 0.49-0.87; p=0.004).

In particular, a lower mortality in pneumonia was seen HR 0.22 (CI 95%, 0.06-0.88; p=0.03). There was no difference in mortality due to cancer.

The lower overall mortality among women compared to men was confirmed, both among the carriers and the controls (p=0.0001).

Discussion

Obligate CYP21A2 carriers (parents of CAH patients) had a reduced mortality, and specifically a reduced mortality due to pneumonia. Our results suggest a better ability to cope with the somatic stress of severe infections among heterozygous carriers of severe CYP21A2 mutations.

The timing, the prompt and exaggerated increase in cortisol in acute situations, could enable inhibition of the cytokines and other inflammatory factors that induce glucocorticoid resistance, resulting in an evolutionary advantage.

This may contribute to the apparent survival advantage since infectious diseases represent a large cause of death, through evolution.

Table: Mortality

<table>
<thead>
<tr>
<th>Infections</th>
<th>Total carriers</th>
<th>Carriers dead</th>
<th>%</th>
<th>Total controls</th>
<th>Controls dead</th>
<th>%</th>
<th>Hazard Ratio</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>1143</td>
<td>45</td>
<td>3.94</td>
<td>114234</td>
<td>540</td>
<td>4.94</td>
<td>0.65 (0.49-0.87)</td>
<td>0.004</td>
</tr>
<tr>
<td>sepsis</td>
<td>4</td>
<td>0.35</td>
<td></td>
<td>362</td>
<td>0.32</td>
<td></td>
<td>1.03 (0.38-2.77)</td>
<td>0.952</td>
</tr>
<tr>
<td>erysipelas</td>
<td>0</td>
<td>0.01</td>
<td></td>
<td>13</td>
<td>0.01</td>
<td></td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>viral hepatitis</td>
<td>0</td>
<td>0.04</td>
<td></td>
<td>51</td>
<td>0.04</td>
<td></td>
<td>0.989</td>
<td></td>
</tr>
<tr>
<td>influenza</td>
<td>0</td>
<td>0.02</td>
<td></td>
<td>23</td>
<td>0.02</td>
<td></td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>pneumonia</td>
<td>2</td>
<td>0.17</td>
<td></td>
<td>725</td>
<td>0.63</td>
<td></td>
<td>0.22 (0.04-0.88)</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Poster presented at:

KAROLINSKA Institute

DOI: 10.3252/pso.eu.57ESPE.2018