Three New Gene Variants (PTPRD, SYT9, and WFS1) related to Korean MODY Children Decrease Insulin Secretion in Human Pancreatic Beta Cells.

Kyung Mi Jang¹, Jung Eun Moon², Su Jeong Lee², Gi Min Lee² and Cheol Woo Ko¹,²
Graduate School of Medicine Kyungpook National University, Department of Pediatrics¹
School of Medicine Kyungpook National University, Department of Pediatrics²

Background

Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY has been identified in Asian populations, however, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. We previously reported that mutations in PTPRD, SYT9 and WFS1 have been identified in Korean families of MODY patients. In this study, we investigated whether mutations (mut) of PTPRD, SYT9 and WFS1 overexpression vectors affected insulin release in human pancreatic beta cell.

Methods

1. 1.2B4 and 1.4E7 β cell lines for human pancreatic β cells.
3. Overexpression confirmation by RT-PCR
4. Analysis of glucose-induced insulin production by ELISA

Results

Glucose induced insulin release in 1.2B4 and 1.4E7 β cells. There was no change in insulin release by glucose in 1.2B4 and 1.4E7 β cells transfected with PTPRD, SYT9 and WFS1 overexpression vectors. Interestingly, the deficit of increased insulin release was 10-12% for mut-WFS1 and 30-35% for mut-SYT9 and mut-PTPRD, respectively in 1.2B4 and 1.4E7 β cells.

Conclusions

Based on the literatures and our findings, PTPRD, SYT9 and WFS1 are promising candidate genes with the potential of Korean MODY family. In addition, further evaluation of cell signals related to insulin secretion by these genes is needed in the future.