Primary gonadal dysgenesis in male 46,XY patients with NR5A1 variants predominantly affects Sertoli cell function

Hoppmann J1, Werner R1, Lünstedt R1, Birnbaum W1, Schwab KO2, Marshall L1, Wünsch L1, Hiort O1
1 Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Lübeck, Lübeck, Germany
2 Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
3 Department of Paediatric Surgery, University of Lübeck, Lübeck, Germany

Background

- Steroidogenic factor 1 (encoded by the NR5A1 gene) is a transcriptional regulator of genes involved in gonadal development and steroidogenesis.
- Mutations in NR5A1 are associated with a wide phenotypic spectrum in 46,XY individuals ranging from partial/complete gonadal dysgenesis, ambiguous genitalia, hypospadias, to infertility.
- However, little is known about the pubertal development and the longitudinal course of endocrine markers for Sertoli and Leydig cell function from infancy to adolescence in these patients.

Objective and Method

- Objective: To investigate the pubertal course and the Sertoli and Leydig cell function in 46,XY patients with an NR5A1 variant reared as males.
- Method: Longitudinal analyses of clinical data on pubertal development, the gonadotrophins LH/FSH, testosterone, and the Sertoli cell markers anti-Müllerian hormone (AMH) and inhibin B.

Patient characteristics

<table>
<thead>
<tr>
<th>Last visit</th>
<th>Mutation</th>
<th>External genitalia</th>
<th>Location of gonads</th>
<th>Mullerian structures</th>
<th>Androgen therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9,9y</td>
<td>c.362delG</td>
<td>Proximal hypospadia</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2 18,2y</td>
<td>c.115A>C</td>
<td>Proximal hypospadia</td>
<td>ing / ing</td>
<td>Rudimentary vagina</td>
<td>15,3-17,2y</td>
</tr>
<tr>
<td>3 16,8y</td>
<td>c.312_317delins ADAAAGAAGG/C</td>
<td>Penoscrotal hypospadia, bifid scrotum</td>
<td>ing / ing</td>
<td>No</td>
<td>since 16,0y</td>
</tr>
<tr>
<td>4 16,1y</td>
<td>c.630_636del GTACGGC</td>
<td>Sertoli hypospadia, bifid scrotum</td>
<td>ing / ing</td>
<td>No</td>
<td>not yet</td>
</tr>
<tr>
<td>5 12,8y</td>
<td>c.1200_1201delCC</td>
<td>Buried penis</td>
<td>ing / scr</td>
<td>No</td>
<td>not yet</td>
</tr>
<tr>
<td>6 0,9y</td>
<td>c.1347+7C</td>
<td>Perineal hypospadia</td>
<td>scr / scr</td>
<td>No</td>
<td>not yet</td>
</tr>
</tbody>
</table>

Table 1: Patient characteristics. NA: not available, ing: inguinal, scr: scrotal.

Pubertal development

- Primary gonadal dysgenesis in 46,XY individuals with NR5A1 variants is associated during adolescence with:
 - Spontaneous pubertal signs
 - Decreased testicular volume
 - Hypergonadotrophic hypogonadism
 - Spontaneous testosterone production
 - Low Sertoli-cell markers.
- More clinical studies are needed to better predict gonadal function (spermatogenesis and testosterone production), and to derive therapeutic implications for clinical practice.

Conclusion

Figure 2A: LH levels in patients 2-6 from birth to adulthood. Black borders indicate testosterone therapy.

Figure 2B: FSH levels in patients 2-6 from birth to adulthood. Black borders indicate testosterone therapy.

Figure 2C: Testosterone levels in patients 1-6 from birth to adulthood. Black borders indicate testosterone therapy.

Figure 2D: Anti-Müllerian hormone (AMH) levels in patients 2, 3, 5 and 6 from birth to adulthood.

Figure 2E: Inhibin B levels in patients 2-6 from birth to adulthood. Black borders indicate testosterone therapy.

Corresponding author: Julia Hoppmann, julia.hoppmann@ukh.de
Disclosure statement: No disclosure.