Patterns of serum thyroglobulin in infants referred with high TSH on newborn screening compared with iodine-sufficient healthy controls

1Wafa Kallali, 2John Beattie, 3David Neumann, 4Kateřina Krylova, 5Jeremy Jones, 6Karen Smith, 7Guftar Shaikh, 8Malcolm Donaldson.
1Hôpital d’enfants Béchir Hamza de Tunis, Tunisia
2Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, UK
3Department of Pediatrics, Charles University in Prague, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Czech Republic
4Department of Biochemistry, Glasgow Royal Infirmery, Glasgow UK
5Section of Child Health, Glasgow University School of Medicine, c/o Royal Hospital for Children, Glasgow, UK

Introduction - Aim

- Thyroglobulin (Tg) is exclusively synthesised by thyroid tissue and is potentially useful in diagnosis of the etiology of congenital hypothyroidism (CH). However, its role has yet to be fully evaluated.
- The aim of the study was to examine the usefulness of Tg in helping define the etiology of CH.

Methods

- Tg samples from patients referred with TSH elevation on the Scottish screening program from January 2004-June 2018, and in 22 healthy iodine-sufficient babies from Czech Republic (2008-2012), were measured in a single laboratory, Glasgow Royal Infirmery, UK, by Immulite 2000 chemiluminescent immunometric assay (CVs 9.8, 5.7 and 5.7% at 1.6, 8.5 and 55 µg/l).
- Lower limit of detection was 2 µg/l.

Results

- Figure 1 shows that between 2004 and 2018, 395 infants were referred with capillary TSH elevation. Tg was sampled in 197 patients (49.9%) and samples were sufficient for analysis in 190 (120 female). Measurement was usually on days 10-12 for patients and day 3 for controls.
- The category of TSH elevation (definite CH, probable CH, status uncertain and transient TSH elevation); and the cause of definite CH in the 190 children is shown in figure 2.
- The group of athyreosis was subdivided into apparent athyreosis (Tg recordable, n=20) and true athyreosis (Tg unrecordable, n=10).
- Causes of dysmornogenesis in our patients were TPO defect (n=2), Tg defect (n=7), DUOX2 mutation (n=1), and no mutation established (n=7).
- Transient hypothyroidism in our patients was related to dysmornogenesis (n=3), TSH receptor mutation (n=2), maternal blocking antibodies (n=5) and cause unknown/other causes (n=29).
- The results of serum thyroglobulin levels in normal Czech infants, and patients with ectopia, athyreosis, hypoplasia, dysmornogenesis, and transient CH are shown in table 1 and figure 3. p* = p values for differences between controls and CH groups according to cause.

<table>
<thead>
<tr>
<th>N</th>
<th>Serum Tg level (µg/l)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectopic gland</td>
<td>62</td>
<td>262.7</td>
</tr>
<tr>
<td>Athyreosis</td>
<td>31</td>
<td>35.4</td>
</tr>
<tr>
<td>Tg < 2µg/l</td>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td>Tg > 2µg/l</td>
<td>33</td>
<td>52.3</td>
</tr>
<tr>
<td>Thyroid Hypoplasia</td>
<td>19</td>
<td>365.5</td>
</tr>
<tr>
<td>Dysmornogenesis</td>
<td>17</td>
<td>617.9</td>
</tr>
<tr>
<td>Transient</td>
<td>39</td>
<td>757.7</td>
</tr>
</tbody>
</table>

Table 1. Serum thyroglobulin in patients with congenital hypothyroidism compared with normal Czech infants.

Summary and conclusions

- Serum thyroglobulin is unreliable in true athyreosis, very low in dysmornogenesis due to Tg mutation, low in apparent athyreosis, variable but usually high (reflecting TSH drive) in thyroid ectopia, and often high in other forms of dysmornogenesis.
- Thyroglobulin is of limited diagnostic value in CH in isolation unless it is very high (suggestive of some forms of dysmornogenesis) or low (as seen in athyreosis and dysmornogenesis due to Tg defect).
- However, Tg can be a useful adjunct to diagnosis in CH when interpreted together with thyroid function and imaging.
- The Tg level at birth in infants with CH is influenced by two factors: the amount of functioning thyroid tissue and the TSH drive caused by the hypothyroidism. Further work is required to show if initial Tg could be helpful in predicting levo-thyroxine (L-T4) requirement later in infancy.