Known and a novel mutation in PHKA2 expand the phenotype of glycogen storage disease IXa to include idiopathic ketotic hypoglycaemia

Anne Benner a,b, Yazeid Al Haidar c,d, Klaus Brusgaarda, Carsten Pedersene, Anja L. Frederiksenb,c, & Henrik T. Christesena,b1

1Hans Christian Andersen Children’s Hospital, Odense University Hospital, Denmark; 2Dept. Clinical Research, Faculty of Health Sciences, University of Southern Denmark; 3Dept. Clinical Genetics, Odense University Hospital, Denmark; 4Dept. of Medical Genomics Research, King Abdullah International medical research center, NGHA, Saudi Arabia; 5Dept. Paediatrics, Lillebaelt Hospital, Kolding, Denmark; 6OPAC, Odense Pancreas Centre, Odense University Hospital, Denmark

Conclusion: Patients with idiopathic ketotic hypoglycaemia may have a mild form of glycogen storage disease. Genetic analysis is encouraged to improve precision of treatment and prognosis, and to diagnose affected family members.

Background

• Idiopathic ketotic hypoglycaemia (IKH) is the most common cause of hypoglycaemia in childhood. It is an exclusion diagnose when thorough investigations have been made
• Glycogen Storage disease (GSD) type IX is due to a deficiency in phosphoralyse kinase and comprises one quarter of all GSD’s. GSD IXa, encoded by \textit{PHKA2}, is the most frequent subtype with a majority of private mutations (>100)
• Clinical features in children with GSD IXa include hepatomegaly, elevated liver enzymes, short stature and ketotic hypoglycemia. Wide variations in symptoms and severity exist without any known genotype-phenotype correlation

Methods

• Retrospective chart evaluation in three families with IKH patients
• Genetic analysis by whole exome sequencing or 29 gene GSD panel

Results

• Six children in three families were diagnosed with IKH (Table 1.) and were reclassified to have GSD IXa

<table>
<thead>
<tr>
<th>Patient</th>
<th>Onset</th>
<th>Sex</th>
<th>GSD IXa (mmol/L)</th>
<th>Ketosis (>1.0 mmol/L)</th>
<th>Hepatomegaly (ultrasound or clinical)</th>
<th>Liver dysfunction (≤2 SD)</th>
<th>Growth retardation</th>
<th>Normal hormonal and metabolic investigations</th>
<th>Gene</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHKA2</td>
<td>p.Pro869Arg</td>
</tr>
<tr>
<td>II:1</td>
<td>17 mo.</td>
<td>F</td>
<td>2.5</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II:1</td>
<td>19 mo.</td>
<td>M</td>
<td>1.9</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Elevated lactat + pyruvat</td>
<td>PHKA2</td>
<td>p.Pro498Leu</td>
</tr>
<tr>
<td>II:2</td>
<td>20 mo.</td>
<td>M</td>
<td>2.1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Elevated lactat + pyruvat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHKA2</td>
<td>p.Arg2Gly</td>
</tr>
<tr>
<td>III:2</td>
<td>6 y.</td>
<td>F</td>
<td>2.2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III:3</td>
<td>8 mo.</td>
<td>M</td>
<td>1.8</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes (subnormal GH values)</td>
<td>PHKA2</td>
<td>p.Arg2Gly</td>
</tr>
<tr>
<td>III:4</td>
<td>3 y.</td>
<td>M</td>
<td>2.3</td>
<td>nd</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{nd=} no data, \textit{mo=} month, \textit{y=} year, \textit{F=} female, \textit{M=} male

Table 1. Clinical details in IKH patients

Genetic investigations

• In family A and B Whole Exome Sequencing were made
• Two previously reported mutations in PHKA2 were found: c.2606C>G, p.Pro869Arg and c.1493C>T, p.Pro498Leu

Family history and the knowledge from family A and B prompted reevaluation of the IKH diagnosis in family C
• A novel GSD IXa mutation (HGMD, ClinVar and literature) c.4C>G, p.Arg2Gly in PHKA2, maternal was found
• Allele frequency 4/100,000 (genomAD)
• \textit{In} silico analysis: Deleterious (PolyPhen-2), deleterious (SIFT), disease-causing (Mutaster)
• Classification according to ACMG guidelines was likely pathogenic

Discussion

• IKH and GSD IXa can clinically overlap, as suggested by our report, why GSD IXa may be under-diagnosed
• We hypothesize that IKH may represent milder variants of GSD, Figure 2.
• GSD gene panel and family testing is encouraged in IKH

Figure 1. Pedigree of three families with IKH
Dark grey: Symptoms
Hachured: Symptoms in childhood
White: No symptoms

Figure 2. Hypothesis: Mild affected children with GSD IXa may be misdiagnosed as IKH. The same may be true for other GSDs.