BACKGROUND

With growth hormone (GH) receptors on virtually all cells, GH replacement therapy should achieve the same tissue distribution and effects as endogenous GH. Thus, the fundamental challenge of developing a long-acting growth hormone (LAGH) is to create a more convenient GH dosing profile while retaining the same excellent safety, efficacy, and tolerability of daily human growth hormone (HGH), including maintaining GH and resulting IGF-1 levels within the physiologic range.

To create a LAGH that extends the GH half-life thereby allowing less frequent dosing, two basic approaches have been followed: (a) combine unmodified GH with a prolongation technology (a depot, crystal, or prodrug) or (b) modify GH in such a way (protein enragiement or albumin binding) that the GH analogue has a longer half-life. TransCon GH, designed to release unmodified GH, is therefore expected to have the same tissue distribution and receptor activation as daily GH.

METHODS

We reviewed LAGHs that have reached various stages of clinical development, categorized them by development approach, and evaluated their status for the indication, pediatric growth hormone deficiency (GHD).

RESULTS

Four LAGHs have been developed in which GH half-life extension was achieved by combining unmodified GH with a prolongation technology. Ten LAGHs have been developed in which GH half-life extension was achieved by modifying GH such that its molecular size was increased (or modified with high affinity albumin).

Approach

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Design</th>
<th>Pediatric GHD Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>GentaTech, Inc.</td>
<td>Nutropin Depot</td>
<td>GH encapsulated in polysaccharide-coglycogenic acid microparticles</td>
<td>Approved in the U.S.; later withdrawn</td>
</tr>
<tr>
<td>LG Life Sciences, Ltd.</td>
<td>LB30002</td>
<td>GH encapsulated in sodium hyaluronate microparticles</td>
<td>Approved but not marketed in Europe; available in South Korea</td>
</tr>
<tr>
<td>Ascendis Pharma A/S</td>
<td>TransCon GH</td>
<td>GH crystallization</td>
<td>Discontinued</td>
</tr>
</tbody>
</table>

Toranlong

Permanently PEGylated GH

Available in China

Novo Nordisk A/S

Permanently PEGylated GH

Discontinued

Ambo, Inc.

Permanently PEGylated and mutated GH

Discontinued

Teva Pharmaceutical Industries, Ltd.

GH fused to albumin

Discontinued

Versartis, Inc.

GH fused to XTEN

Discontinued

OPKO Health, Inc.

GH fused to carboxyterminal peptides

Discontinued

Novo Nordisk A/S

Mutated GH attached to an albumin affinity tag

Phase 2

Genexine, Inc., and Handok, Inc.

GH fused to an Fc fragment

Phase 2

Hamni Pharmaceutical Co., Ltd.

GH fused to an Fc fragment

Phase 2

Of these 14 LAGHs, only 2 have been approved by either the Food and Drug Administration (FDA) or the European Medicines Agency (EMA); both released unmodified GH, thus presumably replicating distribution and pharmacological actions of daily GH.

In contrast to LAGHs that release unmodified GH, 5 of the 10 LAGHs that modify GH have been discontinued. Problems associated with modified GH configurations included lipolysis, inadequate IGF-1 profiles, supraphysiologic GH levels, neutralizing antibodies, inadequate HV, and failure to normalize body composition.

REFERENCES:

DISCUSSION

TransCon GH is a LAGH produg in phase 3 development in which GH is transiently bound to an inert carrier. It was designed to sustainably release unmodified GH over 7 days to achieve the same safety, efficacy, and tolerability as daily GH but with more convenient weekly dosing.

In a phase 2 trial of children with growth hormone deficiency (GHD), a similar safety, efficacy and tolerability to daily GH was shown. IGF-1 standard deviation scores (SDS) increased into normal range. Annualized height velocity (HV) was not statistically different from daily GH. Anti-drug antibody formation (immunogenicity) was low and comparable to daily GH, with no neutralizing antibodies.

CONCLUSION

The only LAGHs that have succeeded in replicating both accelerated HV as well as improvement of metabolic profiles observed with daily GH have been formulations that release unmodified GH. A viable LAGH would likely have to maintain the same tissue distribution as endogenous GH, ie, a candidate based on unmodified GH.

Appendix:

<table>
<thead>
<tr>
<th>Dose (GH/kg/week)</th>
<th>Annualized height velocity (cm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16 mg</td>
<td>9.0 cm</td>
</tr>
<tr>
<td>0.21 mg</td>
<td>9.4 cm</td>
</tr>
<tr>
<td>0.26 mg</td>
<td>9.9 cm</td>
</tr>
<tr>
<td>0.30 mg</td>
<td>10.3 cm</td>
</tr>
</tbody>
</table>

The mean body mass index SDS was stable, similar to daily GH. Adverse events were mild to moderate without lipolysis, also comparable to daily GH. Data from the phase 3 trial in pediatric GHD is expected in 2019.