Biochemical, structural and functional characterization of a novel P450 oxidoreductase mutation causing virilization in a 46,XX patient

Núria Camats1, Sara Benito-Sanz2, Shaheena Parween3, Juan-Pedro López-Siguero4, Mónica Fernández-Cancio3, Christa E Flück3, Sameer S Udahane3, Norio Kagawa3, Laura Audi1 and Amit V. Pandey3

1 VHIR, Hospital Vall d’Hebron, CIBERER, Barcelona, Spain; 2 INGEMM, Hospital Universitario La Paz, CIBERER, Madrid, Spain; 3 Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, and Department of Biomedical Research, University of Bern, Bern, Switzerland; 4 Pediatric Endocrinology Unit, Hospital Carlos Haya, Málaga, Spain; 5 Nagoya University, Nagoya, Japan

Introduction

A broad spectrum of human diseases are caused by mutations in the NADPH cytochrome P450 oxidoreductase (POR)1. Mutations in POR cause mild to severe forms of CAH with and without bone malformation symptoms resembling Antley-Bixler syndrome. Here we are reporting a novel R550W mutation in POR identified in a 46,XX patient with signs of aromatase deficiency. Child was born of first pregnancy and mother presented with signs of virilization (deepening of voice and hirsutism) from the 6th month. Mother had elevated T (545 ng/dl) 5th day post-partum that later returned to normal (26 ng/dl) at 4th month post-partum. The daughter was born with body length of 49 cm and weighed 2.74 Kg at birth. At 7th day fused labioscrotal folds (genital tubercle 1.5 cm with urethral opening, Prader stage 3) were observed. Ultrasound examination revealed presence of uterus and ovaries. Slightly elevated 170H-progesterone (470 ng/dl) and T (84 ng/dl) normalized, ruling out CYP21A2 deficiency and suggesting aromatase deficiency.

DNA was analysed with a custom-designed targeted Disorders of Sexual Development NGS panel (DSSeq v1.1.1 genes) using Sequenom E Ze Technology (Roche Nimblegen) and sequenced on a NextSeq (illumina) platform. The wild type and mutant human POR proteins were expressed in bacteria. The ability of wild type POR and R550W variant to reduce ferricyanide, MIT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and cytochrome c was monitored by measuring the change in absorbance at 420 nm, 610 nm and 550 nm. The ability of WT and R550W variant to support CYP19A1 aromatase activity was determined by tritiated water release assay.

Results

rs550 residue is highly conserved and located in the NADPH binding domain of POR (Figure 3).

Fig 3: (a) Location of R550W residue in POR. (b) R550 is not directly at surface of POR. (c) R550 forms hydrogen bonds with T292 to stabilize the NADPH binding domain. Its mutation to W results in destabilization.

We found severe effects of R550W mutation on POR activities with different substrates. As compared to WT, R550W variant showed 41% cytochrome c and 27 % ferricyanide reduction activity, but had only 7.7 % MTT reduction activity (Figure 4 and Table 1).

Conclusions

The mutation Arg550Trp is located in the NADPH binding region of POR. Computational analysis predicted instability in the NADPH binding region of POR by R550W mutation due to disruption of hydrogen binding, which may affect aromatase (CYP19A1) activity to a higher degree than other partner enzymes because CYP19A1 requires 6 molecules of NADPH per reaction cycle compared to 2 molecules of NADPH for other cytochrome P450 partners of POR. Computationally predicted adverse effect on aromatase activity as well as binding of NADPH were confirmed by experiments using recombinant proteins. These results suggest a pathological effect of POR R550W and a diagnosis of PORD in the patient with p.Arg550Trp/p.Leu253Phe/Ter9Trp in POR.

This research is supported by grants to Amit V Pandey from the Swiss National Science Foundation, Burgemeinde Bern and Novartis Foundation for Medical Biological Research and to Mónica Fernández-Cancio and Sara Benito-Sanz from Instituto de Salud Carlos III, Madrid, Spain.

Methods

DHA, the precursor to androgens, is then metabolized in a series of steps involving HSD3B2 and CYP19A1 to estrogens either directly in the placenta or through intermediates formed in the fetal liver and then sent to the placenta.

Fig 2: The CYP19A1 activity and role of POR. CYP19A1 interacts with POR in the endoplasmic reticulum to receive electrons used in metabolism of androgens to estrogens.

We performed detailed enzymatic and biochemical characterizations of the R550W variant of POR to study its metabolic profile and role in causing POR deficiency (PORD).

Objective

DNA was analysed with a custom-designed targeted Disorders of Sexual Development NGS panel (DSSeq v1.1.1 genes) using Sequenom E Ze Technology (Roche Nimblegen) and sequenced on a NextSeq (illumina) platform.

Fig 1: Steroid hormone biosynthesis. The qualitative regulator of steroidogenesis CYP17A1, converts pregnenolone to 170H-pregnenolone and dehydroepiandrosterone (DHEA). DHEA, the precursor to androgens, is then metabolized in a series of steps involving HSD3B2 and CYP19A1 to estrogens either directly in the placenta or through intermediates formed in the fetal liver and then sent to the placenta.

Fig 2: The CYP19A1 activity and role of POR. CYP19A1 interacts with POR in the endoplasmic reticulum to receive electrons used in metabolism of androgens to estrogens.

DNA was analysed with a custom-designed targeted Disorders of Sexual Development NGS panel (DSSeq v1.1.1 genes) using Sequenom E Ze Technology (Roche Nimblegen) and sequenced on a NextSeq (illumina) platform.

Fig 1: Steroid hormone biosynthesis. The qualitative regulator of steroidogenesis CYP17A1, converts pregnenolone to 170H-pregnenolone and dehydroepiandrosterone (DHEA). DHEA, the precursor to androgens, is then metabolized in a series of steps involving HSD3B2 and CYP19A1 to estrogens either directly in the placenta or through intermediates formed in the fetal liver and then sent to the placenta.

Fig 2: The CYP19A1 activity and role of POR. CYP19A1 interacts with POR in the endoplasmic reticulum to receive electrons used in metabolism of androgens to estrogens.

We performed detailed enzymatic and biochemical characterizations of the R550W variant of POR to study its metabolic profile and role in causing POR deficiency (PORD).