A CASE OF GONADAL DYSGENESIS DUE TO A NOVEL HOMOZYGOUS MUTATION IN NR5A1 GENE

Friederike Denzer 1, Christian Denzer 1, Nadine Hornig 2, Paul-Martin Holterhus 2, Olaf Hiort 3, Martin Wabitsch 1

1 Center for Rare Endocrine Diseases
2 Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
3 Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Hospital of Schleswig-Holstein, UKSH, Campus Kiel, Germany

Conclusion:
We identified a novel homozygous mutation in the SF1 gene causing sex reversal with normogonadotropic hypogonadism and low adrenal androgens.

Background:
Steroidogenic factor (SF1, NR5A1) regulates multiple genes known to be involved in gonadal development, adrenal development, steroidogenesis, and gonadotroph development (1, 5). Heterozygous mutations in the NR5A1 gene have been described in association with mild to severe gonadal dysgenesis with or without adrenal failure (2, 3, 4). Homozygous mutations are rare and have also been described in association with gonadal dysgenesis with or without adrenal failure (6).

Case report:
History
We report a 18-year-old patient of normal female phenotype with absent breast development and primary amenorrhea. Stage of puberty was Tanner B1, PH 3. There was no axillary hair. Karyotyping had been performed before presentation and revealed 46, XY. Pelvic ultrasound showed no Mullerian structures and no gonads.

Clinical Course and Procedures
We identified a novel homozygous mutation in the NR5A1 gene causing sex reversal with normogonadotropic hypogonadism and low adrenal androgens.

Molecular genetics: Genetic examination was performed and revealed a novel homozygous mutation in the NR5A1 gene (c.1048C>T; p.Arg350Trp). This mutation has an allele frequency of < 0.0001 according to ExAC and gnomAD and has, to our knowledge, not been described in the literature. Prediction programs for a possible pathogenicity SIFT and PolyPhen classify this mutation as "deleterious" and "probably damaging". Both parents and one half-brother are heterozygous for this mutation and phenotypically normal and healthy.

References:

Contact:
Dr. Friederike. Denzer
Division of Pediatric Endocrinology and Diabetes
Department of Pediatrics and Adolescent Medicine
University Hospital of Ulm
Ehystr. 24, 89075 Ulm, Germany

Disclosure Statement:
The authors have nothing to disclose