A novel detrimental homozygous mutation of WFS1 gene in two sisters
from non-consanguineous parents with untreated Diabetes Insipidus

Dimitrios T. Papadimitriou¹, Kleanthis Kleanthous¹, Emmanouil Manolakos², Anatoly Tiulpakov³,
Thomas Nikolopoulos⁴, Alexandros Delides⁵, Gerasimos Voros⁶,
Argyrios Dinopoulos⁷, George Zoupanos⁸, Fumihiko Urano⁹

¹Division of Pediatric Endocrinology, Athens Medical Center, Athens, Greece;
²Division of Pediatric Endocrinology, 3rd Department of Pediatrics, Attikon University Hospital, Athens, Greece;
³Access to Genome, Athens-Thessaloniki, Greece;
⁴Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation;
⁵Department of Otorhinolaryngology, Medical School, National and Kapodistrian University of Athens, Greece;
⁶Department of Ophthalmology, Athens Medical Center, Maroussi, Greece;
⁷Department of Pediatric Neurology, 3rd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Greece;
⁸Washington University School of Medicine, St. Louis, MO, USA

No disclosures

Background

Wolfram Syndrome (WS) is a rare autosomal recessive genetic disorder. We present two sisters from non-consanguineous parents, who presented to our pediatric endocrinology clinic due to severe polyuria-polydipsia with inappropriately treated DM (HbA1c 8.2% and 10.1%) and untreated DI.

Methods

DNA was tested with PCR amplification and sequencing analysis (Sanger sequencing) of the entire coding region and all exon-intron splice junctions of the WFS1 gene (chromosome 4): reference sequence: NM_006005.3, with the A of the ATG start codon at position 1.

Results

A novel homozygous point missense c.2069G>A mutation in amino acid position 690 (p.C690Y) replacing Cysteine with Tyrosine in exon 8 was found in both sisters, the parents being heterozygous. The mutation is damaging with a score of 1.000 (Polyphen-2).

Cases

Sister-A, a few weeks ago had a sudden death of brain stem atrophy. She was 19 yrs old. At presentation at our outpatient clinic had a BMI<-2SDS, totally blind since 13 yrs, with primary amenorrhea and bladder incontinence;

- normal cranial nerve examination
- oculomotion with roving eye movements
- normal muscle strength and deep tendon reflexes 2/4
- no extrapyramidal or ataxia signs
- visual acuity “No Light Perception” in both eyes
- pupillary light reflex completely absent with meditated pupils
- normal anterior segment
- intraocular pressure 12mmHg bilaterally
- complete optic nerve atrophy in dilated fundus examination
- tympanogram type A
- TOAEs and aABRs “pass” bilateral in Otologic and Audiologic testing
- appropriate for age mental status with signs of severe depression.

Sister-B, prepubertal 7yrs old

- normal neurological examination
- visual acuity 6/15 (0.40 LogMAR) and 6/19 (0.50 LogMAR) with +1.00 diopters sphere corrective lens in both eyes
- symmetrically reduced pupillary light reflex with not relative afferent pupillary reflex
- normal anterior segment
- intraocular pressure 12mmHg and 11mmHg
- moderate optic nerve atrophy
- tympanogram type C
- right side “pass” and left “fail” of TOAEs, aABRs “pass” bilateral.

➢ Both had normal electrolytes, severe neurogenic bladder and Grade III hydronephrosis.
➢ They presented salt-wasting due to ANP elevation when treatment for DI was started, successfully treated with fludrocortisone along with frequent bladder catheterizations.
➢ Within six months, patient’s A BMI normalized, and she had menstrual onset.
➢ Persistence of hydronephrosis in patient B revealed a grade III bilateral vesicoureteral reflux that was treated with endoscopic injection of Deflux.

Conclusion

We present a novel detrimental homozygous WFS1 gene mutation in two sisters from non-consanguineous parents of Greek descent, both originated 5-6 generations before from Trapezund, an ancient Greek colony located in the Greek –until 1922- Pontos, presently in the state of Turkey, indicating a founder mutation effect.