Effect of Phosphate and Vitamin D analogues of X-Linked Hypophosphatemia during growth on the development of osteoarticular lesions in the Hyp mouse model

Axelle Cauliez(1), Carole-Anne Faraji-Bellée(1), Benjamin Salmon(1,2), Olivier Fogel(3), Aurélie Benoit(4), Thorsten Schinke(5), Corinne Miceli(3), Karine Briot(3,6), Agnès Linglart(6,7), Catherine Chaussain(1,2,6), Claire Bardet(1)

1) Laboratory Orofacial Pathologies, Imaging and Biotherapies EA 2396, School of Dentistry/Paris Descartes University Sorbonne Paris Cite, France.
2) AP-HP Department of Orthodontics, Bispebjerg Hospital, Paris, France.
3) AP-HP Service Rhumatologie B Hôpital Cochin, Paris, and Medical School Paris Descartes University, France.
4) EA 4422, UMR8, School of Dentistry/Paris Descartes University Sorbonne Paris Cite, France.
5) Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
6) Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, France.
7) AP-HP Department of Pediatric Endocrinology, Kremlin-Bicêtre Hospital, School of Medicine University Paris Sud, France.

INTRODUCTION

- Mineralization defects and paradoxical mineralizing enthesopathies are hallmarks of X-linked Hypophosphatemia (XLH), a rare skeletal disease caused by inactivating mutations in the PHEX gene (Phosphate-regulating endopeptidase homolog, X-linked).
- The conventional medical treatment, which consists in oral phosphorus and active vitamin D analogue supplementation, aims at countering consequences of FGF23 excess and is commonly prescribed from early childhood to the end of growth(1), and sometimes through adulthood. Cartilaginous tissue complications in adults become a dominant feature in the clinical evolution of XLH(2).
- By using the Hyp mice, the murine model of XLH, we previously monitored the development of osteoarticular lesions through a 12 months follow up, identifying enthesopathies, calcifications and osteoarthritis. These lesions were already present at 3 months and significantly increased from 3 to 12 months.

AIM

Here, we studied the effect of the current treatment (oral phosphorus and active vitamin D) of XLH on the development of skeletal manifestations. We compared the effect of the treatment when started early in life to that of treatment started in early adulthood.

METHODS

- Hyp mice were treated with oral phosphorus supplementation (1.93g/L in the water) and intraperitoneal calcitriol injections (0.175μg/kg) every other day and compared to non-treated Hyp mice and Wild Type (WT) mice (N = 6 per group).
- The treatment followed two different patterns: - group 1: from 2 months to 3 months to study the effect of the conventional treatment on osteoarticular lesions; group 2: from 3 weeks to 3 months to study the effect of long-term treatment started during growth.

RESULTS

CONCLUSION

- Our work confirms that the conventional treatment given early in life improves osteoarticular lesions, bone mineralization and micro architecture, and fusion of growth plate (data not showed).
- We found no difference between untreated Hyp mice and mice treated only one month at the end of growth, suggesting that the treatment during adulthood should be administrated during a longer period to be efficient.

PERSPECTIVES

- Our findings highlight the relevance of the Hyp murine model for preclinical studies aiming to test new therapies on the development of osteoarticular lesions.
- Future studies should compare the effect of the new therapy based on the anti-FGF23 antibody to that of the conventional therapy.

REFERENCES

1. Linglart A et al., Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endostruct 2014.

AKNOWLEDGEMENTS

Left: Slimani and Jeremy Saboine (EA2396 and Platform d’Imagerie du Vivant Paris Descartes (P19), Paris Descartes University, France) for their help producing Micro-CT data; Annie Llorens and Brigitte Baroukh for their kind assistance for histological techniques; Fondation pour la Recherche Médicale (grant 5G2011123012); Axelle Cauliez was supported by the Société Française d’Endocrinologie et de Diabétologie Pédiatrique.