Background: Recombinant human insulin-like growth factor-1 (rhIGF-1) is approved in Europe and the US for the treatment of growth failure in children with severe primary IGF-1 deficiency (IGF-1 deficiency in severe growth failure).

The European Incrlex® Growth Forum Database (EU-IGFD) registry was established to monitor the safety and effectiveness of rhIGF-1 (measuring arm) (Novo Nordisk) for height stimulation in children with IGF-1 deficiency.

Subgroups of interest identified from the EU-IGFD registry: patients with and without Laron syndrome (LS) and patients considered as responders or non-responders have previously been described based on effectiveness and safety data.

Here, these subgroups are combined to describe clinically relevant effectiveness and safety data from the EU-IGFD registry.

Objective: To describe clinically relevant subgroups of patients likely to achieve an increase in height in response to rhIGF-1 therapy, together with safety.

Methods
Study design: Data were compiled from this ongoing open-label, multicentre, observational study (EUCTHD20030312, 30 May 2007-31 May 2017). The study was initiated in December 2008 and children from 13 countries in Europe have been enrolled.

Patients: Patients were divided into 5 clinically relevant subgroups.

3 treatment naïve-patients (NPP) subgroups:
- NPP LS (treatment-naïve and prepubertal).
- NPP Non-LS with treatment response (NPP non-LS-responder; responder = year 1 height SDS change ≥ 0.3).

2 subgroups of patients who were not treatment naïve or who were pubertal:
- Non-NPP LS.
- Non-NPP Non-LS.

Assessments at the cut-off date of 10 May 2017:
- Data collected at baseline and during treatment included:

 - Baseline characteristics (demographic and growth parameters).
 - Changes in growth parameters.
 - Safety data collected included:

 - Targeted adverse events (AEs) related to rhIGF-1 and all serious AEs, up to completion in the EU-IGFD registry.

Statistical analyses:
- Height standard deviation score (SDS) was calculated:
 - In France and southern European countries using Semip reference values.
 - In the UK, Belgium, Sweden, and Poland, using UK reference values.

- Annualized height velocity (HV1) (cm/year) was calculated using height values measured at the first point of interest and at 3 years before this time point, divided by the time interval between the 2 measurements (6 months and 3 years).

This analysis was mainly descriptive.

Logistic regression analysis was used to identify baseline predictive factors together with safety.

Results:
Patients: Of 249 patients enrolled, 213 were included in this analysis.

NPP in 30: 2: 2: 1: 0: 1
- NPP-Non-LS: 38: 38: 15: 0: 70

Of 33 patients who were excluded 29 patients had missing treatment response status and 4 patients had missing pubertal status and/or missing data.

Effectiveness (year 2)
- NPP LS and NPP Non-LS responders:
- In addition to NPP non-LS responders, in whom by definition a higher height SDS change was expected, there was a higher change in mean height SDS in patients with NPP LS (Figure 5).

Safety
- Safety is summarised in Figure 2.

- The targeted AE reported in the greatest proportion of patients was hypoglycaemia, except in patients who were NPP non-LS poor-responders. Headache.

Conclusions:
- Patients who were NPP responder better to rhIGF-1 treatment than those who were NPP responders in terms of height SDS and HV improvements at year 1.

- Patients who were NPP with LS were younger and shorter than those who were NPP non-LS at first rhIGF-1 intake, and showed a slightly better response at year 1.

- Compared with other subgroups, patients in the NPP LS and NPP non-LS responders subgroups had:
 - Lower mean age at first rhIGF-1 intake.
 - Higher mean height SDS changes from baseline at year 1.

- Safety is consistent with the known profile of rhIGF-1 in all 5 subgroups.

Table 1: Patient characteristics at baseline (enrolled population)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>NPP</th>
<th>NPP Non-LS</th>
<th>Non-NPP LS</th>
<th>Non-NPP Non-LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>16</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Age (years) at 1/2 intake (mean SD)</td>
<td>11.4</td>
<td>12.5</td>
<td>13.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Primary diagnosis</td>
<td>SPIGFD</td>
<td>SPIGFD</td>
<td>LS</td>
<td>NPP LS</td>
</tr>
<tr>
<td>Height velocity (first measurement)</td>
<td>8.3</td>
<td>6.7</td>
<td>9.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Height velocity (year 1)</td>
<td>3.5</td>
<td>3.6</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Log. of rhIGF-1 (mg/kg body mass)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TLC (Quick Response) code</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

References:
1. EMA. Increlex - Summary of Product Characteristics 2017

Acknowledgments
The authors thank all patients involved in the study, as well as their caregivers, care team, investigators and research staff in participating institutions.

Disclosures
IP is the only sponsor of this paper. No dual publication. This article does not contain any studies with human or animal subjects performed by any of the authors.

Medical writing support
The authors of this manuscript received support for medical writing assistance. Use only when requested by the author.

Presented at the 57th Annual European Society of Paediatric Endocrinology | Athens, Greece | 27–29 September 2018

This analysis was sponsored by Ipsen